在Linux环境下成功实现矩阵乘法的MPI并行运算。使用命令 mpicc -o
编译程序,并通过 mpirun
命令运行。
MPI并行矩阵乘法实现指南
相关推荐
MPI分块矩阵乘法Cannon算法实现
分块矩阵乘法的高效实现,还是得靠MPI 的 Cannon 算法。这套方法挺经典,尤其在大规模矩阵运算里,性能提升蛮。你只要用CentOS7 + mpiC++ 3.2.0环境,稍微配下就能跑起来,响应也快,代码也不复杂。矩阵太大跑不动?那就拆成块来干。分块策略就是这么干的,把大矩阵切成小块,各块分给不同进程跑乘法,再合并。嗯,适合科研或工程类的高算力任务。这里用的是 Cannon 算法,优点就是数据传输比较少,计算效率也高,蛮适合做并行优化的。如果你是新手,可以先看看这篇:MPI 并行矩阵乘法实现指南,写得还挺细。开发环境推荐就用CentOS7,稳定、兼容性也好。如果不熟 apt 和 CentO
Hadoop
0
2025-06-14
MPI并行WARSHALL算法
MPI并行实现WARSHALL算法
算法与数据结构
19
2024-05-25
Parallel Programming in C with MPI and OpenMP并行编程指南
并行编程的实战派资源《Parallel Programming in C with MPI and OpenMP》,是我最近翻出来重新读的一本老资料,讲得还挺系统的,适合想用 C 搞并行的朋友。从讲到,再到和,这几个名词一听挺吓人,其实里面的原理也不复杂,就是帮你搞清楚用多个器到底值不值。MPI那部分更偏底层,像点对点通信、广播、同步这些基础操作都讲得比较细,适合喜欢掌控感的同学;而OpenMP就更“亲民”一点,直接在#pragma omp parallel下一行加逻辑,线程就跑起来了,响应也快,代码也简单。里面的 C 语言例子不少,而且还讲了并行性能这一块。你如果是那种看完代码立马想测试效果
算法与数据结构
0
2025-06-29
并行计算导论MPI实战教材
并行计算的实战教材,中科院的《并行计算导论》算是比较硬核的一本。内容偏技术流,讲的是怎么用Linux配合MPI干高性能的活儿,比如数值积分、矩阵求解、FFT、二维泊松方程这些常见问题的并行解法。
操作环境挺接地气的,基于Linux,代码也不绕,用过命令行的你肯定能上手。多例子直接跑MPI就行,像mpirun -np 4 ./fft_solver,响应也快,调试也方便。
有意思的是书里不仅讲怎么干活,还讲怎么干得快。比如在并行矩阵求解那里,提到了稀疏矩阵怎么分块传输,怎么避免通信阻塞,嗯,读起来蛮有收获的。
如果你对并行算法有点兴趣,推荐顺手看看几个相关的资源:MPI 并行 WARSHALL 算
算法与数据结构
0
2025-06-24
Matlab 矩阵乘法代码
Matlab 矩阵乘法代码,支持稀疏/密集向量和矩阵,提供基本的线性代数运算。还支持稀疏和密集元组,以及字节码优化。
Matlab
15
2024-05-01
矩阵运算: 加减、乘法与除法
矩阵的加减运算
矩阵的加减运算要求两个矩阵的行数和列数必须相同。
矩阵的乘法运算
运算符:*
条件: 前一个矩阵的列数必须等于后一个矩阵的行数,或者其中一个是标量。
理解: 可以理解为前一个矩阵每个行的元素分别与后一个矩阵对应列的元素相乘后相加。
矩阵的除法运算
运算符:/ 和
/ 表示右除,相当于将矩阵放在除号的右侧。
`` 表示左除,相当于将矩阵放在除号的左侧。
区别:
右除: A / B 等价于 A * inv(B),其中 inv(B) 表示 B 的逆矩阵。
左除: A B 等价于 inv(A) * B,其中 inv(A) 表示 A 的逆矩阵。
应用: 线性方
Matlab
18
2024-05-27
GPU上矩阵乘法优化实践
讨论在GPU上优化矩阵乘法时,首先需了解矩阵乘法本身及GPU与CUDA编程模型基础。矩阵乘法是科学计算中的核心操作,广泛用于工程、物理和数学领域。GPU作为高性能并行处理器,能显著加速多种计算密集型任务,特别是矩阵乘法。CUDA为NVIDIA GPU设计的并行计算架构,提供C语言风格的编程接口,允许直接在GPU上执行自定义并行算法。GT200是NVIDIA的重要GPU型号,支持双精度计算,适合科学计算。优化矩阵乘法可通过算法复杂度和时间复杂度的研究,以及针对特定处理器架构的算法优化,如CUBLAS库提供的高性能矩阵乘法。文章提到,矩阵分块方法有效利用GPU并行性,提高计算效率。还探讨了资源利用
算法与数据结构
12
2024-10-13
Python实现矩阵乘法代码-D4M模块介绍
Python实现矩阵乘法代码D4M模块是适用于Python的工具,可以将非结构化数据表示为稀疏矩阵中的三元组,并支持标准线性代数运算。使用D4M,您可以轻松构建高级分析,无需大量代码。最初由Jeremy Kepner博士及其林肯实验室团队在MATLAB中开发,现已用本机Python实现。D4M项目目前已经实现了内核功能,并具备基本的Accumulo / Graphulo连接功能。详细安装和使用说明请参见官方文档。
Matlab
12
2024-07-21
变邻域搜索算法MATLAB实现-ParallelClassics通过MPI和CUDA并行编程优化的经典算法
变邻域搜索算法 MATLAB 代码是通过串行和并行编程实现的一组强大计算能力的经典算法。通过比较串行与并行的计算结果,探索了工具、技术和解决方案的差异。该项目利用随机数生成问题并展示并行编程的强大功能,特别是在解决类似 KNN 问题时的表现。
变邻域搜索算法的实现过程中,空间被划分为多个模拟邻域的盒子(立方体)。在每个盒子中,随机生成q类型或c类型的点。对于每个q点,算法需要找到其最近的c邻居。项目中采用了 C 语言以及并行技术(如 MPI 和 CUDA)实现了这一过程。所有实现都包含了验证功能,以确保结果的正确性。
串行实现的过程中,空间被划分为v个框,并在其中生成Numq个随机的q点和Nu
Matlab
10
2024-11-05