探讨了在大数据分析中如何通过将传统聚类算法并行化来提高计算效率的方法。结合MapReduce分布式处理模型,作者对K-means、PAM和CLARA等三种常见算法进行了分布式化实验,并分析了数据规模和节点数量对并行算法性能的影响。实验结果表明,该方法有效地实现了聚类算法的并行化,并适用于分布式系统。
大数据分析中聚类算法的并行化研究
相关推荐
数据挖掘中聚类算法比较研究
聚类分析是数据挖掘中的关键技术之一。探讨了数据挖掘中聚类算法的典型要求和不同类别的聚类方法。
数据挖掘
0
2024-08-24
云平台上的Canopy-Kmeans并行聚类算法研究
针对大数据的高维特性及海量性,提出在云计算平台中使用Canopy-Kmeans并行聚类算法。利用三角不等式原理减少计算冗余,显著提升算法执行速度。深入研究了Canopy-Kmeans并行聚类算法,并通过多个不同大小的数据集实验证明,该算法具有良好的加速比、数据伸缩率及扩展性,非常适合于海量数据的挖掘与分析。
数据挖掘
2
2024-07-16
数据挖掘中聚类算法的全面分析
聚类是数据挖掘的关键技术之一,用于揭示数据之间的内在关系和模式。
数据挖掘
2
2024-07-13
数据挖掘中聚类算法的全面分析
详尽分析了数据挖掘中各种聚类算法的特点和应用场景。
数据挖掘
2
2024-07-20
数据分析中的大数据算法应用
大数据算法通过分类、聚类、预测以及关联规则分析等方法,揭示数据内在规律和关联,为数据分析提供更高效、准确的支持,进而实现数据价值挖掘和决策优化。
算法与数据结构
2
2024-06-30
探索数据挖掘:聚类算法的比较研究
这份关于数据挖掘中聚类算法的比较研究论文,带你深入了解不同算法的优缺点和适用场景。
数据挖掘
3
2024-05-20
使用层次和基于密度的聚类方法的数据分析比较研究
数据挖掘涉及使用不同技术来提取有用模式。聚类是其中一种技术,通过提取数据中的聚类以发现信息。层次聚类和基于密度的聚类是两种常用方法。层次聚类利用树状图展示聚类结果,而DBSCAN则是一种基于密度的算法,能够发现任意形状的簇。详细探讨了这些算法的高效实现。
数据挖掘
0
2024-08-08
大数据分析研究
本研究仅供参考,请勿抄袭。为您的学习负责,请独立完成作业。
Storm
2
2024-06-30
数据挖掘中的层次聚类算法
层次聚类算法是一种常用的数据挖掘技术,它通过将数据点逐步合并成越来越大的簇来构建层次结构。该算法不需要预先指定簇的数量,而是根据数据点之间的相似性逐步构建层次树状图。
数据挖掘
3
2024-05-12