MATLAB numerical integration

当前话题为您枚举了最新的MATLAB numerical integration。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Numerical Integration with Data Points Using Simpson's 1/3Rule,Trapezoidal Rule,and Composite Trapezoidal Rule in MATLAB
This program was developed based on personal needs and allows for numerical integration of multiple x-values and their corresponding function values using Simpson's 1/3 Rule, Trapezoidal Rule, and the Composite Trapezoidal Rule. The only input required from the user is in lines 2 and 3, where they must insert their data points. For example:?ta Input: x = [1,2,3]; y = [2,2,3];This method is much faster than using an online calculator, where you have to wait a few seconds to see the result. :)
Numerical Solutions of PDEs in MATLAB
本程序介绍了应用最为广泛的椭圆型、双曲型、抛物型偏微分方程的数值解法,并详细编程实现了每种方程的多种常见数值解法。附件中使用MATLAB编程来实现这些算法。
Numerical_Methods_Using_Matlab
本书提供了用Matlab进行数值计算的丰富资料,内容可读性、知识性和实用性都非常强。
Numerical Methods in MATLAB-Fourth Edition
数值方法(MATLAB版)(第四版)中文版.pdf
Genetic Operators and MATLAB Code for Numerical Analysis
3.2 Genetic Operators (1) Crossover Operator The crossover operator randomly pairs individuals from the parent population for crossover operations, generating ( m ) offspring individuals to form the next generation. Two types of crossover are employed: single-point crossover and two-point crossover. Given two individuals for crossover ( P = {p_1, p_2, p_3, \dots, p_n} ) and ( Q = {q_1, q_2, q_3, \dots, q_n} ), a random crossover point ( b_1 ) is chosen from the range [1, n] for single-point crossover. The elements before ( b_1 ) in ( P ) are copied to offspring individual ( \text{new Individual1} ), while the remaining elements are copied from ( Q ). Similarly, a second offspring ( \text{new Individual2} ) is generated by swapping the roles of ( P ) and ( Q ). In two-point crossover, two random crossover points ( b_1 ) and ( b_2 ) are chosen, and the elements between ( b_1 ) and ( b_2 ) in ( P ) are copied to the offspring, with the remaining elements taken from ( Q ). (2) Mutation Operator After the crossover operation, two mutation operators are applied to the offspring individuals. The first is rotation mutation, where a random position ( \text{bit} ) is chosen, and with probability ( p_m1 ), the portion of the individual after ( \text{bit} ) is rotated. The second is position mutation, with a smaller probability ( p_m2 ), two integers ( \text{bit1} ) and ( \text{bit2} ) are randomly chosen from the range [1, n], and the corresponding parts of the individual are swapped. (3) Selection Operator The fitness of the mutated offspring individuals is evaluated using the lowest level line method. The parent and offspring individuals are ranked by their fitness in descending order, and the top ( m ) individuals are selected as the next generation's parents. 3.3 Termination Criteria The steps in sections 3.2(1), 3.2(2), and 3.2(3) are repeated until the fitness of the best solution meets the required threshold or the pre-defined number of generations is reached. At this point, the optimal solution is output. 4. Case Study To test the performance of the algorithm, two cases from literature [3] are solved. In Case 1, a large rectangle of size ( 15 \times 40 ) is divided into 25 smaller rectangles. Based on the lowest level line method, the corresponding coding sequence is ( \text{Opt} = {1, -9, 11, -15, 17, -24, -25, -10, -14, -22, -23, -2, -3, -5, 18, 7, -8, -12, 19, -20, 21, 6, 13, 4} ). The width is set at 40, and height considerations follow suit for the genetic algorithm implementation.
Numerical Approximation of Adjoint Blasius Equation Using MATLAB
目前的脚本近似于原始和相关联的对偶(伴随)布拉修斯方程,如Kuehl等人[~11/2020]在关于“连续伴随补充到布拉修斯方程”中的研究所述。数值边值问题使用射击方法近似,其中要解决的初值问题采用4阶Runge-Kutta方法(RK4)。
Matlab_TLAB_SVM_Regression_Integration
Matlab开发 - 在TLAB中使用ekasSVM回归函数。演示如何将WEKA的ML库导入Matlab,并使用SVM回归。
Numerical Approximation of the Volterra Population Model Using MATLAB GUI
在Volterra的封闭系统中,人口增长模型的无量纲形式为 k(du/dt) = u - u^2 - u ∫_0^t u(x) dx。该GUI允许用户输入初始总体 u0、无量纲常数 k、最终时间 Tmax 和网格点数 M。通过单击适当的按钮,用户可以使用各种数值方法生成图。 \"毒性项\" 是积分 ∫_0^t u(x) dx。面板“毒性术语的梯形规则”和“毒性术语的辛普森规则”首先对毒性术语应用正交规则,然后使用指定的数值方法求解所得系统。有关更多信息,请参阅 (1)。有关问题的全面分析,请参阅: 1. Kevin G. TeBeest,Volterra*人口模型的数值和解析解,SIAM Rev. 39 (1997),第1期。3, 484-493。 2. RD Small,《封闭系统中的人口增长》,SIAM评论25(1983),第1期。1, 93-95。
Numerical Methods for Solving Partial Differential Equations using MATLAB
This method can solve various partial differential equations and represents the latest numerical solution techniques. It is based on MATLAB programming, making it easier to understand and implement. By utilizing MATLAB, complex mathematical models become more accessible and the process of solving PDEs is streamlined for better clarity and efficiency.
MATLAB OpenCL Wrapper Simplified Interface for OpenCL Integration in MATLAB
该包装器以类似于Mathematica的OpenCLLink的方式提供了MATLAB和OpenCL之间的接口。控制环境中的一切,来回复制数据,以直观的方式启动线程,所有这些都组织在一个类中,并通过简单的函数接口完成。编译内核、复制缓冲区、启动线程和读回数据只需要2次调用。课程包括: obj = OpenCLInterface:查询所有可用设备的构造函数。 obj.PrintDevices:打印所有可用设备。 obj.GetGPUDevices:获取所有GPU设备的ID。 obj.GetCPUDevices:获取所有CPU设备的ID。 obj.CreateFunction:从文件或字符串中读取内核代码,编译并缓存它。 obj.Run:使用指定的本地和全局工作负载、标量和缓冲区及其内存标志启动内核。指定为输出的缓冲区将包含执行后的数据。