Least Squares Method

当前话题为您枚举了最新的Least Squares Method。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Least Squares Fitting of Circle Curve Using Least Squares Method
This resource demonstrates the use of Least Squares Method to fit a circle curve. The output includes the coordinates of the center and the radius of the fitted circle.
Ellipse Fitting with Least Squares in Matlab
针对一组x,y值的基于最小平方方差和的椭圆和圆的拟合,用Matlab实现。
Nonlinear Least Squares Optimization Toolbox in MATLAB
本工具箱内含有MATLAB解决非线性最小二乘优化问题的所有m函数文件代码,方便用户高效地实现相关计算与优化。
Direct Least-Squares Fitting of Algebraic Surfaces
在圆拟合的过程中,直接最小二乘法是用于代数曲面拟合的重要技术。通过将数据点最小化到拟合曲面的距离,可以实现高效、精确的曲面拟合。
Observation of Numerical Instability Phenomenon in Least Squares Polynomial Fitting
在[-1,1]区间上取n=20个等距节点,计算出以相应节点上的e^x的值作为数据样本,以1,x,x²,⋯,x^l为基函数做出l=3,5,7,9次的最小二乘拟合多项式。画出ln(cond(A)) - l曲线,其中A是确定最小二乘多项式系数的矩阵。计算出不同阶最小二乘多项式给出的最小偏差σ(l)。将基函数改为1,P₁(x),P₂(x),⋯,Pₗ(x),其中Pᵢ(x)是勒让德多项式,结果如何?
Moving Least Squares Algorithm for Deforming Points and Images-MATLAB Implementation
该软件包包含一组工具,允许使用移动最小二乘算法实时变形点和图像。这是一种无需使用薄板样条算法提供的计算扩展技术即可获得良好图像变形的快速技术。该算法发表在Scott Schaefer,Travis McPhail,Joe Warren的论文“使用最小二乘法进行图像变形”中。
deconvtv-Fast Algorithm for Total Variation Deconvolution A Numerical Solver for Total Variation Regularized Least Squares Deconvolution Problem in MATLAB
Total variation regularized least squares deconvolution is one of the standard problems in image processing. This package uses the concept of Augmented Lagrangian [1] to implement the state-of-the-art algorithm, which can be viewed as a variant of the widely known Alternating Direction Method of Multipliers (ADMM). The deconvtv user interface is similar to the current MATLAB deconvolution tools, including deconvwnr, deconvlucy, and deconvreg: out = deconvtv(img, psf, mu, opt); deconvtv supports direct spatiotemporal processing for image and video deconvolution problems. Its applications include, but are not limited to: image and video deblurring, image and video denoising, depth data enhancement, thermal air turbulence stabilization, and multi-view synthesis. For more information and citations, please refer to: [1] SH Chan, R. Khoshabeh, KB Gibson, PE Gill, and TQ Nguyen, \"Augmented Lagrangian Method for Total Variation Video Restoration\", IEEE Trans. Image.
Simplex Method MATLAB Implementation
以下是一个单纯形法的MATLAB实现代码,适合单纯形法入门学习。此程序通过输入标准形式的线性规划问题,求解最优解。程序的基本流程如下: 输入目标函数和约束条件。 将问题转化为标准型。 进行单纯形法迭代,直到找到最优解或判断不可行。 MATLAB代码示例如下: function [x, fval] = simplex(c, A, b) [m, n] = size(A); tableau = [A, eye(m), b; -c', zeros(1, m+1)]; while true % 选择入基变量 [~, pivot_col] = min(tableau(end, 1:n)); if tableau(end, pivot_col) >= 0 break; end % 选择出基变量 ratios = tableau(1:m, end) ./ tableau(1:m, pivot_col); [~, pivot_row] = min(ratios(ratios > 0)); tableau = pivot(tableau, pivot_row, pivot_col); end x = tableau(1:m, end); fval = -tableau(end, end); end function new_tableau = pivot(tableau, pivot_row, pivot_col) new_tableau = tableau; pivot_value = tableau(pivot_row, pivot_col); new_tableau(pivot_row, :) = tableau(pivot_row, :) / pivot_value; for i = 1:size(tableau, 1) if i ~= pivot_row new_tableau(i, :) = tableau(i, :) - tableau(i, pivot_col) * new_tableau(pivot_row, :); end end end 此程序演示了单纯形法的迭代过程,其中pivot函数用于执行每次单纯形迭代中的枢轴操作。输入参数c为目标函数系数,A为约束条件矩阵,b为约束右侧常数。
Newton_Method_Optimization_Scheme
牛顿法实现 使用牛顿法进行优化,能有效提高收敛速度。 MATLAB实现 在MATLAB中实现该算法,通过自定义函数进行优化。 绘图与跟踪 绘制优化过程中的图形,直观展示结果。 记录结点位置 对每一步的结点位置进行记录,便于分析。 耗时对比 进行耗时对比,评估算法性能。
sougou-pinyin-input-method
搜狗拼音输入法是一个高效的中文输入工具,它以其快速、准确的输入体验而闻名。用户可以通过简单的拼音输入,迅速找到所需的汉字,搜狗拼音输入法支持多种个性化设置,满足不同用户的需求。