数据分析竞赛

当前话题为您枚举了最新的数据分析竞赛。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

大数据分析师竞赛理论试题
2021 年大数据分析师竞赛理论试题。
美国数学建模竞赛中的数据分析
美国数学建模竞赛(MCM/ICM)每年吸引全球学生参与,提升数学、计算机和团队协作能力。C题通常关注现实世界的复杂问题,要求参赛者利用数学模型分析和解决。美赛C题数据分析涉及各种图表如折线图、柱状图、散点图和饼图,帮助参赛者理解数据分布、趋势和变量关系。数据集包含丰富和复杂的信息,涵盖多维度数据,需要深入挖掘。2018年美赛数据反映了当时的社会、经济和科技问题。资源文件可能包括CSV、Excel或文件,参赛者需进行数据清洗、可视化和统计分析,选择合适数学模型如优化、仿真或机器学习,实现解决方案并解释结果。
2021 大数据分析师竞赛理论题
2021 年大数据分析师竞赛 理论题
深入探究泰迪杯数据分析竞赛:获奖作品与赛题解析
聚焦泰迪杯数据分析大赛,本资源提供获奖作品的深度解析,并结合原始赛题数据,助您领略数据分析的魅力。
CDR数据分析
利用通信CDR数据库进行后台操作和数据分析,便于深入了解通信行为模式和优化网络性能。
大数据分析
这本书是关于大数据分析的教科书,由斯坦福大学知名教授Anand Rajaraman和Jeff Ullman整理编写而成,内容非常实用。
数据分析数据集
使用 Python pandas 和第三方包演示功能的数据集,包含于《利用 Python 进行数据分析》中。
手机销售数据分析
手机销售数据分析 这份 Jupyter Notebook 文件(.ipynb)包含了对手机销售情况的深入分析。通过探索和可视化销售数据,我们可以揭示出有价值的见解,例如: 畅销机型: 识别哪些手机型号最受欢迎,以及它们的销售趋势。 销售渠道: 分析线上和线下等不同销售渠道的表现。 地区差异: 比较不同地区或城市的销售情况,找出潜在的市场机会。 客户画像: 了解购买手机的典型客户群体特征。 销售趋势预测: 利用历史数据预测未来销售趋势,帮助制定销售策略。 使用 Python 和各种数据分析库,我们可以对销售数据进行全面的探索和分析,为业务决策提供数据支持。
Python 数据分析概述
使用 Python 进行数据分析,了解其优势、功能和应用。
大数据分析代码
Scala 实现的大数据分析代码,包括最高在线人数、登录日志分析、付款情况分析等。