测量不确定度

当前话题为您枚举了最新的测量不确定度。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Matlab_开发_绘制不确定度的方法
在Matlab中,errorshade是一种细微的绘制不确定度的方法,可以有效地展示数据的不确定性和变化范围。使用该方法,用户能够更直观地理解数据的波动性。
探索不确定数据挖掘技术
数据挖掘的一个分支是处理不确定和概率数据的建模、查询和挖掘。
利用Morris方法探索函数输出对不确定性因素的敏感度
Morris方法是一种高效的敏感性分析工具,用于评估函数输出对不确定性因素的依赖程度。该方法以其计算效率高而著称,能够在有限的计算资源下提供可靠的敏感性评估结果。 Morris方法的核心思想是通过对输入参数空间进行系统性采样,并观察函数输出的相应变化来量化不确定性因素的影响。它通过分析输入参数的微小变化对函数输出的影响,来识别对输出影响较大的关键因素。 该方法在多个领域得到广泛应用,例如模型简化、参数校准和不确定性量化。通过识别对模型输出影响较小的因素,研究人员可以简化模型并降低计算成本。此外,Morris方法还有助于确定哪些参数需要更精确的估计,从而提高模型预测的可靠性。 Morris方法的实现细节可以参考Saltelli等人的著作《实践中的敏感性分析-评估科学模型的指南》(2004)以及Sohier等人发表的论文“改进空中发射到轨道分离的Morris方法的代表性”(2014)。
广义非线性非解析卡方拟合基于已知测量误差的不确定性估计
fitChiSquare是一个适用于任何模型函数的广义卡方拟合程序,用于处理已知数据测量误差的情况。该程序返回模型参数及其在delta卡方= 1边界处的不确定性(68%置信区间),同时返回拟合的卡方值和自由度。拟合优度通过比较卡方与自由度之比来评估(大于1表示拟合不佳)。此外,根据已知的测量误差,该程序可以提供拟合结果。请参阅“help fitChiSquare”以获取详细使用说明。
决策分析方法:驾驭不确定性,优化决策
科学决策的基石是合理的决策分析方法。决策分析作为一种系统性的分析方法,专门用于研究不确定性问题。其核心目标是改进决策过程,从众多备选方案中筛选出最佳方案,以实现特定目标。 针对不同的决策情境,我们可以采用不同的决策分析方法: 确定性情形 不确定性情形 随机性情形 多目标情形 多人决策情形
基于加权不确定图数据的高效紧密子图挖掘算法
研究不确定图数据中的紧密子图挖掘问题,利用加权不确定图模型,以子图期望密度和顶点期望度数度量紧密程度。算法基于贪心迭代,优化执行过程,保证结果达到2近似比,并且确保高效率和正确性。研究还证明了带顶点限制的紧密子图挖掘问题的NP难度,该算法相比其他方法更快速高效。
优化不确定数据集频繁模式挖掘的近似算法
为了提升在不确定数据集上频繁模式挖掘的效率,针对现有算法在判断是否需要创建子头表时计算量较大的问题,提出了近似挖掘策略AAT-Mine。该策略在损失少量频繁项集的基础上,显著提高了整体算法的挖掘效率。实验采用三个典型数据集对算法进行了测试,并与目前最优算法及典型算法进行了性能对比,结果表明AAT-Mine在时空效率上均有显著提升。
贝叶斯法则的应用和预测不确定性
1969年,J.理查德·戈特三世在攻读普林斯顿大学天体物理博士学位之前,他前往欧洲旅行。他目睹了柏林墙,这是8年前建成的,成为冷战象征。站在墙下,他开始思考它将继续分隔东德和西德多久。尽管预测只依赖一个数据点,面对地缘政治的不可预测性,这看似荒谬。然而,我们总是在需要时作出这些预测。例如,你站在外国城市的公共汽车站,其他游客等候已经7分钟。你如何预测下一班车的到达时间是否值得继续等待?彼得·诺维德谷歌研究部主任在他的“数据的不合理有效性”演讲中深入探讨了这个问题。贝叶斯法则作为概率论的一个关键概念,提供了一种方法来更新对假设的信念,特别是在处理不确定性和不完整性问题时非常有效。
不确定性空间数据挖掘算法模型的应用
不确定性空间数据挖掘算法模型在实际应用中展现出其独特的价值和效果。
MATLAB开发-FocusMeasure函数实现图像焦点度测量
MATLAB开发 - FocusMeasure。该函数用于测量图像的相对焦点度。它通过分析图像的清晰度和对比度来确定图像的焦点状态,从而帮助评估图像是否达到理想的聚焦效果。FocusMeasure函数通常应用于图像处理、计算机视觉以及自动对焦系统中。通过该函数,用户能够自动化地检查图像的清晰度,优化拍摄过程或后期处理工作流。