PID controller
当前话题为您枚举了最新的 PID controller。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
模糊PID模型
利用Simulink建模,编写M函数,实现模糊PID控制,对PID控制参数进行调整。
Matlab
0
2024-09-26
matlab_development_wind_feedback_controller_simulink_block
Matlab开发 - 防风反馈控制器 Simulink块。此Simulink块包含一个具有防上卷功能的PID控制器。
Matlab
0
2024-11-04
Self-Correcting Regulator Controller Simulation in MATLAB Simulink
在本篇文章中,我们将深入探讨自校正调节器控制器在MATLAB Simulink中的仿真。通过自校正控制技术,可以有效地调节系统的动态响应,使系统自动适应变化并提升性能。以下是仿真步骤:
1. 初始化模型- 打开MATLAB Simulink,新建项目文件并加载必要模块。- 设置输入和输出参数,使系统初步适应基本控制要求。
2. 配置自校正调节器模块- 在Simulink库中添加自校正控制模块,并对其参数进行详细设置。- 配置调节器的反馈路径,以确保控制器能够实时响应。
3. 运行仿真并分析结果- 启动仿真过程,实时监测系统动态响应。- 观察并记录控制输出的变化趋势,分析控制器的自校正效果。
通过以上步骤,您可以有效地模拟并优化自校正调节器控制器的性能,使系统更加稳定和高效。
Matlab
0
2024-11-05
Longitudinal Vehicle Dynamics ABS/TCS Controller Subsystem Development in MATLAB
纵向车辆动力学: 车辆在牵引或制动下的纵向动力学 - ABS/TCS控制器子系统
Matlab
0
2024-10-31
优化学术成绩-PID控制简介-PID控制器
提升学术成绩是许多学生和教育工作者关注的核心问题。PID控制器作为一种常见的控制系统设计工具,其原理和应用广泛适用于各种学科领域。
Matlab
0
2024-08-12
PID控制基础概述快速学习PID控制的交互式工具
这个交互式工具帮助您快速掌握PID控制的基础知识。PID控制基础概述展示了闭环系统的响应,由PID控制器和过程模型组成。您可以选择使用标准的P、I、PD和PID控制器,灵活调整参数并观察其对系统响应的影响。流程模型可以用多种方式表达,如拉普拉斯变换、零极点增益模型和转换功能。通过交互式调整参数,如设定点幅度、负载干扰时间、噪声方差和噪音时间,您可以直观地理解这些参数对控制系统稳定性和性能的影响。工具设计基于多位领域专家的理论基础,确保您能快速准确地评估闭环系统的稳定性。
Matlab
0
2024-09-23
模糊自校正PID程序
提供一个用于控制系统的模糊自校正PID Matlab程序。该程序性能稳定,是控制领域的常用策略,供大家参考使用。
Matlab
4
2024-05-25
MATLAB PID Simulink应用示例
MATLAB PID Simulink实例展示了其绝对可行性和广泛应用性,是学习和应用PID控制器的理想选择。
Matlab
0
2024-08-09
Plug-in Direct Particle Swarm Repetitive Controller An Innovative Approach to Process Control
插件直接粒子群重复控制器(PDPSRC)和插件直接多群重复控制器(PDMSRC)是2013年提出的一种新颖的重复过程控制方法。此项目使用户能够使用单群和多群控制器,灵感来源于迭代学习控制(ILC)。如果您关注动态优化问题和粒子群优化,该项目将非常吸引您。详细信息请参考http://dx.doi.org/10.1515/bpasts-2015-0098。
Matlab
0
2024-11-03
Boost_DC-DC_Converter_Closed_Loop_PI_Controller_Matlab_Development
用于升压DC-DC转换器的闭环PI控制器。开关频率Fsw = 5000Hz和采样频率Fs = 100000(均保存在Model Workspace中)。负载电阻R = 20欧姆和Vin = 10V。L和C的设计宗旨是:
C > D / (R * (dVo / Vo) * Fsw)
L > (D * (1-D)^2 * R) / (2 * Fsw)
其中D从(D = 1 - (Vin / Vo))计算得出,且Vin = 10V,输出电压Vo = 80V,(dVo / Vo)= 0.01(代表Vo的1%波动)。
升压设计的参考资料可在教科书《电力电子》(作者:Daniel W. Hart)中找到。任何PID调节方法都可以用于此应用程序,例如Ziegler-Nichols方法或手动方法,如跟踪和误差调整。
Matlab
0
2024-11-05