中文网络评论
当前话题为您枚举了最新的中文网络评论。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
中文网络评论挖掘产品特征及情感倾向
利用Apriori算法非监督提取产品特征,结合监督情感分析获取情感倾向,根据用户权重进行排序,有效挖掘评论中产品信息。
数据挖掘
5
2024-04-30
Python网络爬虫抓取猫眼评论数据及可视化分析
Python爬虫源码分享:轻松获取数据!无需担心技术门槛,这些源码助你成为数据抓取专家。不论是分析竞品数据、收集行业情报,还是探索社交媒体动态,都能满足你的需求。
数据挖掘
3
2024-07-19
在线评论门户是否应显示欺诈性评论?
随着人们对合法促销的在线产品评论的兴趣日益浓厚,欺诈性评论也随之增加。然而,除了用于初步欺诈检测的算法外,门户网站在发现欺诈性评论后的管理策略仍然鲜为人知。探讨了消费者如何应对潜在的欺诈性评论,以及评论门户如何利用这些知识制定更有效的欺诈管理策略。我们将来自信任文献的理论发展与随机实验以及来自Yelp的大数据统计分析相结合,发现当门户网站同时展示欺诈性评论和非欺诈性评论时,消费者倾向于增强对信息的信任,这与常规审查可疑评论的做法相反。欺诈性评论对消费者决策的影响与产品质量初始评估的不确定性相关,进一步推动了决策启发式分析的案例。
统计分析
2
2024-07-17
景区评论_内含日期,景区,评论内容属性改写.xlsx
景区评论_内含日期,景区,评论内容属性中的文章,以清理无意义的标点符号为优化目标,使用同义词替换和句式调整技巧,确保原文信息的保留,同时增强原创性。
数据挖掘
2
2024-07-18
微博评论情感标注
自然语言情感分析主要应用于微博评论,通过算法识别用户情感倾向,帮助了解公众情绪动态。利用机器学习模型,系统能高效分类情感类别,提高数据处理效率。
算法与数据结构
2
2024-07-12
酒店评论情感极性语料库
该语料库包含大量酒店评论文本,并根据情感倾向标注为正面 (pos) 或负面 (neg) 两类,以 CSV 格式提供训练集和测试集,适用于情感分析模型的训练与评估。
统计分析
2
2024-05-16
Python爬虫实战:获取GitHub项目评论
利用Python爬虫技术,你可以轻松获取GitHub项目中的评论数据,深入了解用户反馈和项目评价。
掌握数据抓取技能,犹如获得一把打开数据宝库的钥匙,助你成为洞悉信息的智者。无论是竞品分析、行业趋势预测,还是社交媒体洞察,Python爬虫都能为你提供强大的数据支持。
数据挖掘
3
2024-05-28
ACRA 亚马逊产品评论挖掘分析
亚马逊产品评论挖掘分析是Web数据挖掘作业的一部分,从亚马逊提取和分析客户对产品的反馈。项目包括网络爬虫,从指定的亚马逊产品URL获取客户评论,并将其存储为JSON格式文本。预处理阶段将所有评论整合为一个集合,供斯坦福NLP核心的SPIED进行后续分析。实施过程中,我们使用了种子术语来提取评论中与产品描述相关的术语。更精确的方法是使用黄金标准评论来定义种子术语,以提高提取的准确性。
数据挖掘
0
2024-08-27
理解人工神经网络-tinyxml指南[中文]
在图11.6预测结果的指导下,我们的主人公可以根据预测结果对不同类别的人群采用不同的销售策略。人工神经网络(Artificial Neural Networks,ANNs)是模拟生物神经网络进行信息处理的一种数学模型,基于大脑生理研究成果,模拟大脑的某些机理与机制,实现特定功能。1943年,美国心理学家McCulloch和数学家Pitts提出了形式神经元的MP模型,证明单个神经元能执行逻辑功能,开创了人工神经网络研究的新纪元。1957年,计算机科学家Rosenblatt使用硬件实现了最早的神经网络模型——感知器,用于模拟生物的感知和学习能力。1969年,M.Minsky等详细分析了感知器及其功能限制,出版了《Perceptron》一书,指出感知器无法解决高阶问题,人工神经网络的研究陷入低谷。20世纪80年代后,超大规模集成电路、脑科学、生物学、光学的迅速发展为人工神经网络的兴起奠定了基础,使其进入了兴盛时期。人工神经元是人工神经网络的基本信息处理单位,其模型如图11-7所示。一个人工神经元对输入信号进行处理,其输出y为( )y f u b ,其中i=1, 2, ..., m,w为权重,x为输入信号。
算法与数据结构
0
2024-09-13
Python构建民宿评论情感分析平台
基于Python的民宿评论情感分析平台
本项目融合大数据技术、网络爬虫、前后端开发以及MySQL数据库等知识,实现对民宿评论数据进行情感分析,并将结果以可视化大屏的形式呈现。
核心功能
数据采集:利用网络爬虫技术,自动采集各大民宿平台的评论数据。
情感分析:基于自然语言处理技术,对评论文本进行情感倾向分析,识别用户的情感态度(正面、负面、中性)。
数据存储:将采集到的评论数据和分析结果存储于MySQL数据库,方便后续查询和分析。
可视化展示:通过前端技术,将情感分析结果以图表、图形等形式展示在大屏上,直观地展现用户对民宿的评价情况。
技术栈
编程语言: Python
数据分析: Pandas, NumPy
自然语言处理: Jieba, SnowNLP
数据库: MySQL
前端: HTML, CSS, JavaScript
可视化: ECharts
应用价值
帮助民宿经营者了解用户对其服务的评价,及时发现问题并改进服务质量。
为潜在用户提供参考,帮助其选择合适的民宿。
助力民宿平台优化推荐算法,提升用户体验。
数据挖掘
6
2024-04-29