该语料库包含大量酒店评论文本,并根据情感倾向标注为正面 (pos) 或负面 (neg) 两类,以 CSV 格式提供训练集和测试集,适用于情感分析模型的训练与评估。
酒店评论情感极性语料库
相关推荐
中文情感文本标注语料库
精选2万多条标注好的中文情感分类语料,可用于模型训练和情感分析练习。
spark
4
2024-05-13
Niek Sanders的Twitter情感语料库的应用
在信息爆炸的时代,社交媒体平台如Twitter成为人们表达情绪和观点的重要场所。情感分析技术,即从大量文本中自动识别和理解情感倾向的技术,因此日益受到关注。Niek Sanders的Twitter情感语料库是为情感分析研究准备的大规模数据集,包含1,578,627条推文,每条经过人工标注,为研究者提供了宝贵的训练和测试资源。该数据集不仅反映了社交媒体情感表达的多样性和复杂性,也为机器学习和深度学习领域的研究提供了丰富素材。利用大数据技术如Hadoop、Spark进行数据预处理和分析,结合TensorFlow、PyTorch等深度学习框架进行模型训练,可以显著提升情感分析算法的性能和泛化能力。
算法与数据结构
3
2024-07-16
结巴分词版搜狗语料库
以搜狗语料库为基础,运用结巴分词工具进行处理,所得的已分词版本。
算法与数据结构
3
2024-04-29
微博评论情感标注
自然语言情感分析主要应用于微博评论,通过算法识别用户情感倾向,帮助了解公众情绪动态。利用机器学习模型,系统能高效分类情感类别,提高数据处理效率。
算法与数据结构
2
2024-07-12
中文语料库分析利器:灵玖LJCorpus
语料库语言学借助海量语料库,深入分析语言特征,指导自然语言处理系统开发。而灵玖LJCorpus软件,为中文语料库分析提供自动化、高效的解决方案。
统计分析
4
2024-05-16
Python文章关键词提取实战-语料库准备
整理具有代表性的文本语料库,确保文章内容与关键词提取任务相匹配。
数据挖掘
3
2024-04-30
中文文本分类语料库测试集下载
中文文本分类语料库测试集下载包含了复旦大学李荣陆提供的测试语料。其中,test_corpus.rar包含9833篇文档,用于测试;train_corpus.rar则是包含9804篇文档的训练语料。两个语料库各分为20个相同类别,并按照1:1的比例划分。
算法与数据结构
2
2024-07-14
HSK作文语料库中逆序词现象分析(2011年)
以HSK作文语料库为基础,对2011年HSK作文测试中出现的逆序词偏误进行了详尽检索和统计分析。从逆序词的等级来看,乙级词的偏误最为显著;在逆序词的结构方面,联合结构的偏误占比最高;此外,汉字文化圈的学生相比非汉字文化圈的学生,更容易因母语负迁移而出现逆序词的混淆现象,导致词性和词义的偏误。
统计分析
1
2024-07-30
Python构建民宿评论情感分析平台
基于Python的民宿评论情感分析平台
本项目融合大数据技术、网络爬虫、前后端开发以及MySQL数据库等知识,实现对民宿评论数据进行情感分析,并将结果以可视化大屏的形式呈现。
核心功能
数据采集:利用网络爬虫技术,自动采集各大民宿平台的评论数据。
情感分析:基于自然语言处理技术,对评论文本进行情感倾向分析,识别用户的情感态度(正面、负面、中性)。
数据存储:将采集到的评论数据和分析结果存储于MySQL数据库,方便后续查询和分析。
可视化展示:通过前端技术,将情感分析结果以图表、图形等形式展示在大屏上,直观地展现用户对民宿的评价情况。
技术栈
编程语言: Python
数据分析: Pandas, NumPy
自然语言处理: Jieba, SnowNLP
数据库: MySQL
前端: HTML, CSS, JavaScript
可视化: ECharts
应用价值
帮助民宿经营者了解用户对其服务的评价,及时发现问题并改进服务质量。
为潜在用户提供参考,帮助其选择合适的民宿。
助力民宿平台优化推荐算法,提升用户体验。
数据挖掘
6
2024-04-29