连接组学

当前话题为您枚举了最新的 连接组学。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

甲亢患者血清和尿液代谢组学研究
血清胆碱、葡萄糖、三甲胺升高,脂质、乳酸、糖蛋白、丙氨酸下降 尿液葡萄糖、柠檬酸、牛磺酸、肌氨酸升高,马尿酸、肌酸降低
细胞组学数据分析与可视化MATLAB开发
细胞组学数据的分析和可视化是当前研究的重点。在一项名为《自然方法》的研究中,2013年,Emanuel JP Nazareth等人利用高通量指纹技术,探索了人类多能干细胞因子反应性和谱系诱导偏倚。
蛋白质组学质谱分析的基础及数据处理技术
蛋白质组学质谱分析的基本原理与方法介绍。2. 使用GPM(X!tandem)进行蛋白质组学数据库检索的技术解析。3. TPP软件在蛋白质组学数据统计分析中的应用详解。
基于Matlab的开发MSKCC GDSC癌症基因组学数据分析工具
基于Matlab的开发:MSKCC GDSC癌症基因组学数据分析工具。从Memorial Sloan Kettering Cancer Center的癌症基因组数据服务器(CGDS)检索数据的功能。
通过组稀疏因子分解学习宏观脑连接体
在这项工作中,我们探索了一个框架,该框架有助于应用学习算法来自动提取脑部连接体。使用张量编码,我们设计了一个目标,倾向于生物学上合理的束结构。这项研究可能对正常的大脑发育和衰老、先天性异常、白细胞营养不良、肿瘤和术前计划、缺血和中风、脑病(毒性、代谢、传染性)、创伤性脑损伤、精神疾病、痴呆、抑郁症以及功能连接映射和认知神经科学产生深远影响。我们提供的演示展示了如何:(1)阶段1:使用贪婪的前向选择策略为每个体素分配方向候选集,从而初始化大脑连接组的三个二维张量,例如正交匹配追踪(OMP)或我们提出的算法称为GreedyOrientation;(2)第2阶段:建立和优化目标功能,包括提议的组调节器,以增强分册的生物学可行性。
利用宏基因组数据组装某物种基因组一组装指南
详细介绍了利用宏基因组数据组装某物种基因组的整个流程,包括数据预处理、三种不同组装工具的应用(Minia、SPAdes和Megahit),以及组装结果的评估和比较。首先进行宏基因组数据的预处理,包括参考基因组的比对、reads的提取和过滤。随后使用Minia、SPAdes和Megahit进行基因组组装,分别介绍了它们的特点和适用情况。最后通过Quast评估组装结果,比较了三种工具的效果。为利用宏基因组数据进行某物种基因组组装提供了详细指南。
MySQL参数选项组
MySQL参数选项组配置了MySQL客户机程序mysql.exe可以读取的参数信息。常用的参数包括“prompt”和“default-character-set=gbk”。修改“ [mysql] ”参数选项组中的参数值会直接影响新打开的MySQL客户机。
统计学入门
抽样与数据 描述性统计 概率主题 离散随机变量 连续随机变量 正态分布 中心极限定理 置信区间 单样本假设检验
学霸查询系统
让学习轻轻松松!
信息学简介
信息学是研究信息的收集、存储、处理和传输的学科。它涵盖了计算机科学、电子学、数学及其它相关学科的内容。信息学在现代社会中扮演着至关重要的角色,支撑着大数据时代的发展和信息技术的应用。