Python 2

当前话题为您枚举了最新的 Python 2。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

《Python 数据分析 2nd Edition》PDF
作者: Wes McKinney页数: 550语言: 英文出版商: O'Reilly Media出版日期: 2017-09-25ISBN-10: 1491957662ISBN-13: 9781491957660目录:- 前言- Python 语言基础、IPython 和 Jupyter 笔记本- 内置数据结构、函数和文件- NumPy 基础:数组和矢量化计算- pandas 入门- 数据加载、存储和文件格式- 数据清洗和准备- 数据处理:连接、合并和重塑- 绘图和可视化- 数据汇总和组操作- 插曲:数据分析示例- 时间序列- 高级 NumPy- 使用 pandas 的建模库- 示例数据集- 附
Python基础第2天作业笔记本
Python基础第2天作业笔记本
Python代码文件cs224w-colab2.py
这是一个Python代码文件,用于CS224W课程的第二次协作任务。它包含了图神经网络的实现及其在社交网络分析中的应用。
MATLAB代码的Python端口masks2Contours简介
这篇文章介绍了由密歇根大学和伦敦国王学院合作研发的MATLAB代码的Python端口,称为masks2Contours。原MATLAB代码将3D遮罩作为输入,并生成它们在心脏腔室中的轮廓点。Python端口对代码进行了组织改进,并集成在GUI中,由伦敦国王学院的Eric Kerfoot博士编写。此外,文章还介绍了该端口的使用方法和Eidolon界面,用于从NIFTI文件中选择输入数据。
Python数据分析的全面指南(第2版)
《Python数据分析的全面指南》(第2版)详细探讨了利用Python进行高效数据处理的方法和工具。本书涵盖了各类数据的处理技术,包括结构化和非结构化数据,重点介绍了NumPy、pandas、matplotlib、scikit-learn、SciPy以及IPython与Jupyter等重要的Python库和工具。书中还提供了详细的安装指南和操作系统设置,适用于Windows、Apple及GNU/Linux等多种环境。对Python语言基础、IPython及Jupyter notebook的使用也进行了深入讲解,包括语法、标量类型、控制流等核心概念。此外,本书还介绍了数据结构、函数和文件操作的高
ChemPathTool基于Python2的化学路径图工具
matlab绘图的形状代码已经通过Python2的ChemPathTool得到了有效的替代
Python代码实现分级Rank2NMF(Hierarchical NMF)
展示了NMF(非负矩阵分解)在Python中的分级Rank2 NMF实现,适用于Python 3.6及以上版本,基于Numpy库的参考代码。以下为该算法的基本流程和实现步骤: 采用分级Rank2 NMF方法,逐步分解矩阵,并进行层次性分解。 使用Python的Numpy库进行数值计算,简化实现过程。 以下为该算法的Python实现代码示例: import numpy as np # 假设输入矩阵X为m×n维 X = np.random.rand(10, 10) # 设置NMF的秩(rank)为2 rank = 2 # 初始化W和H矩阵 W = np.random.rand(X.sha
Spark 2.x + Python 大数据机器学习实战
本课程系统讲解在 Spark 2.0 上高效运用 Python 处理数据和建立机器学习模型。课程包含大数据和机器学习基本概念讲解、丰富的案例实践操作和范例程序编码。课程适合学习大数据基础知识的初学者,更适合正在使用机器学习想结合大数据技术的人员。
高级算法设计实验2Python实现搜索算法
本实验教授搜索算法的基本设计思想与方法,特别是A*算法的详细实现。通过高级编程语言Python,学生将能够熟练应用这些算法解决寻路问题,并验证其正确性。
MATLAB和Python中易用的2D浸入边界方法 IB2d源代码
IB2d是一种简单易用的2D浸入边界方法,由Nicholas A. Battista博士开发并在MATLAB和Python中完整实现。该方法包含60多个内置示例,涵盖纤维结构模型、对流扩散及Boussinesq逼近等多个选项。若用于研究、教育或娱乐,请联系作者。相关论文引用:NA Battista等人的研究成果发表于多个期刊。