金融分析

当前话题为您枚举了最新的 金融分析。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

金融计量分析-Stata 2016 版
本书由 Stata 公司出版,专为使用 Stata 进行金融计量分析而撰写。
京东金融大数据分析平台
海量数据时代,数据分析需求紧迫。京东金融构建大数据分析平台,助力企业有效利用数据实现精准决策。
金融大数据分析配套代码
Python语言编写的金融大数据挖掘和分析案例配套代码。
Python金融大数据分析实战
聚焦金融行业,这套大数据挖掘分析实战教程整合了从理论到实践所需的全部资料,包括详细的文档讲解、完整的代码实现以及相关软件工具。
金融科技分析工具开发及其应用
这是一个经过精简的金融科技分析工具箱版本,虽然部分功能未包含在内。捐赠此工具是为了促进协作和帮助。如有需要,我可提供完整内容。详细信息请联系michael.robbins@bloomberg.net 或 michael.robbins@us.cibc.com。
大数据在金融界的应用分析
大数据技术在金融领域广泛应用,包括: 金融大数据的发展与应用场景 金融大数据典型案例分析 金融大数据应用挑战和建议
R语言金融数据统计分析
R语言金融数据统计分析 利用R语言强大的统计分析能力,对股票、期货、期权等金融数据进行深入分析,探索市场趋势、风险评估和投资策略。
金融与电信行业数据挖掘应用案例分析
深入探讨数据挖掘在金融和电信行业的实际应用案例,从多个维度剖析其运作机制与实施策略,并结合具体实例阐述其带来的效益与挑战,为相关从业者提供借鉴与参考。
金融分析优化股票交易时机的策略
这是一个金融分析项目,通过简单移动平均线(SMA)交易策略进行回测,以优化股票交易时机。简单移动平均线(SMA)通过计算多个时间段的证券收盘价平均值,帮助识别价格趋势,指导交易决策。在这种策略中,短期平均线通常用作支撑水平,有助于判断价格是否开始上涨或下跌。该项目利用统计分析系统(SAS)的宏和SQL技术进行数据处理和分析。
R语言金融时间序列分析工具FinTS包详解
R语言的FinTS(Financial Time Series)包专注于金融时间序列分析,提供多种功能和方法,适用于金融学、经济学和统计学领域。该工具包支持数据处理、描述性统计、趋势和季节性分析、模型拟合、滤波与平滑、arch效应检验、异常检测、模拟与仿真、金融指标计算以及可视化等任务,为用户提供全面的数据分析和模型构建支持。使用FinTS包,可以深入理解金融市场的波动性和时间序列的统计特性。