海量数据时代,数据分析需求紧迫。京东金融构建大数据分析平台,助力企业有效利用数据实现精准决策。
京东金融大数据分析平台
相关推荐
京东金融大数据分析平台总体架构演示文稿
京东金融大数据分析平台的整体架构演示文稿,可供架构设计参考。
Hadoop
2
2024-07-16
金融大数据分析配套代码
Python语言编写的金融大数据挖掘和分析案例配套代码。
算法与数据结构
2
2024-05-20
Python金融大数据分析实战
聚焦金融行业,这套大数据挖掘分析实战教程整合了从理论到实践所需的全部资料,包括详细的文档讲解、完整的代码实现以及相关软件工具。
数据挖掘
2
2024-05-23
金融大数据分析技术解决方案应用案例
金融系统包括对公客户综合积分子系统、展业通客户综合收益分析子系统、授信客户资金结算子系统、对公柜面交易流水分析子系统等。
Hadoop
2
2024-07-25
大数据分析平台Spark的应用
大数据分析平台Spark在“蘑菇云”行动中发挥了关键作用。
spark
3
2024-07-13
金融大数据平台技术规范
为满足金融行业对海量数据存储、处理和分析的需求,构建安全、稳定、高效的金融大数据平台,特制定本技术规范。
一、架构设计
平台应采用分布式架构,具备高可用性、可扩展性和容错性,支持弹性伸缩和动态资源调度,以应对金融业务快速增长和数据量激增的挑战。
二、数据存储
平台需支持多种数据存储类型,包括关系型数据库、NoSQL数据库、分布式文件系统等,满足结构化数据、半结构化数据和非结构化数据的存储需求。同时,应具备数据分片、数据压缩、数据加密等功能,保障数据安全和存储效率。
三、数据处理
平台需提供高效的数据处理能力,支持批处理、流处理、交互式查询等多种数据处理模式,并提供丰富的数据处理算子,满足数据清洗、转换、聚合、分析等需求。
四、数据分析
平台应具备强大的数据分析能力,支持机器学习、深度学习等算法模型,提供数据可视化工具,帮助用户挖掘数据价值,辅助业务决策。
五、安全保障
平台需建立完善的安全保障机制,包括数据安全、系统安全和网络安全,保障数据资产安全和平台稳定运行。
六、运维管理
平台应提供便捷的运维管理工具,实现平台监控、性能优化、故障诊断等功能,降低运维成本,提高运维效率。
算法与数据结构
3
2024-06-30
大数据时代的数据分析平台架构
随着互联网、移动互联网和物联网的蓬勃发展,我们已经置身于海量数据的时代。据数据调查公司IDC预测,到2011年,全球数据总量将达到1.8万亿GB。在这样的背景下,对海量数据进行精准分析已经成为一项非常紧迫的需求。
算法与数据结构
2
2024-07-17
大数据分析
这本书是关于大数据分析的教科书,由斯坦福大学知名教授Anand Rajaraman和Jeff Ullman整理编写而成,内容非常实用。
数据挖掘
0
2024-10-12
京东金融天机数据模型的革新
京东金融正在推出一种创新的数据模型,提升其服务质量和效率。
算法与数据结构
2
2024-07-14