分析型处理

当前话题为您枚举了最新的 分析型处理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

预测型数据分析的其他算法
k近邻、决策树、随机森林是常用的回归和分类算法。 k近邻:根据数据的相似度对新数据进行预测。 决策树:使用一组规则将数据分类或预测数值。 随机森林:通过组合多个决策树来提高准确性。
预测型数据分析:分类与逻辑回归
预测型数据分析:分类与逻辑回归 数据分析师培训 本课件涵盖以下内容: 分类方法概述 逻辑回归模型原理 模型建立与评估 应用案例分析
Greenplum:新时代分析型云数据库
Greenplum,新时代的分析型云数据库,提供强大分析功能和云原生体验。
不规则型-SPC过程统计分析
在不规则型情况下,图形表现为不规则状态或是几种不同状态的混合体。SPC过程统计分析用于分析这些不规则型的变化,帮助识别数据中的潜在问题和趋势。
星型雪花型结构实例解析
星型雪花型结构实例 Sales 事实表 | 字段 | 说明 ||---|---|| time_key | 时间维度外键 || item_key | 商品维度外键 || branch_key | 分支机构维度外键 || location_key | 地理位置维度外键 || units_sold | 销量 || dollars_sold | 销售额 || avg_sales | 平均销售额 | Shipping 事实表 | 字段 | 说明 ||---|---|| time_key | 时间维度外键 || item_key | 商品维度外键 || shipper_key | 承运商维度外键 || from_location | 始发地 || to_location | 目的地 || dollars_cost | 运输成本 || units_shipped | 运输量 | 时间维度表 | 字段 | 说明 ||---|---|| time_key | 时间主键 || day_of_the_week | 星期几 || month | 月份 || quarter | 季度 || year | 年份 | 地理位置维度表 | 字段 | 说明 ||---|---|| location_key | 地理位置主键 || street | 街道 || city | 城市 || province_or_street | 省或州 || country | 国家 | 商品维度表 | 字段 | 说明 ||---|---|| item_key | 商品主键 || item_name | 商品名称 || brand | 品牌 || type | 类型 || supplier_type | 供应商类型 | 分支机构维度表 | 字段 | 说明 ||---|---|| branch_key | 分支机构主键 || branch_name | 分支机构名称 || branch_type | 分支机构类型 | 承运商维度表 | 字段 | 说明 ||---|---|| shipper_key | 承运商主键 || shipper_name | 承运商名称 || location_key | 承运商地理位置外键 || shipper_type | 承运商类型 |
MATLAB求解抛物型方程热传导问题例子分析
求解抛物型方程的例子 考虑一个带有矩形孔的金属板上的热传导问题。板的左边保持在100°C,板的右边热量从板向环境空气定常流动,其他边及内孔边界保持绝缘。初始时,板的温度为0°C。此问题可以概括为如下定解问题: 区域的边界顶点坐标为:(-0.5, -0.8), (-0.5, 0.8), (0.5, 0.8) 内边界的顶点坐标为:(-0.05, -0.4), (-0.05, 0.4), (0.05, -0.4), (0.05, 0.4) 此问题的数学模型是一个二维热传导方程,常用有限差分法或有限元法进行数值求解。在MATLAB中,可以通过建立网格、定义初始条件和边界条件,利用求解抛物型方程的数值方法进行计算,进而得到金属板在不同时间步长下的温度分布。"
联机分析处理简介
联机分析处理(OLAP)是基于数据仓库的大型数据库信息分析工具,满足决策支持和多维查询需求。OLAP具有快速、可分析、多维、信息丰富和共享等特点,广泛应用于跨部门主题分析,不同于用于客户事务处理的联机事物处理(OLTP)。OLAP侧重于数据分析和决策支持,典型应用包括信用卡风险分析和预测。
OLAP 联机分析处理
OLAP,即联机分析处理,能够快速、灵活地分析多维数据,帮助用户从不同角度深入挖掘数据价值。
即用型Azkaban
开箱即用的Azkaban,解压后可直接使用,简化部署流程,助您快速开启工作流管理。
利用 RapidMiner 解锁商业难题:预测型数据分析实战
洞悉未来,驱动决策:预测型数据分析实战 本课程深入浅出地讲解如何运用 RapidMiner 解决实际商业问题。课程涵盖预测模型构建、数据预处理技巧以及模型评估与优化等核心内容,帮助学员掌握将数据转化为可执行商业策略的能力。 课程亮点: 以实战为导向,结合真实案例,演示如何利用 RapidMiner 进行预测分析。 涵盖数据预处理、特征工程、模型选择与调优等关键步骤。 注重实践操作,帮助学员快速上手并应用到实际工作中。 适用人群: 数据分析师 商业分析师 对数据分析和预测模型感兴趣的学生和职场人士 学习目标: 掌握 RapidMiner 的基本操作和功能。 理解预测型数据分析的基本原理和方法。 能够利用 RapidMiner 构建预测模型并进行模型评估与优化。 能够将预测模型应用于解决实际商业问题。