CNN代码

当前话题为您枚举了最新的 CNN代码。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

灰色模型Matlab原始代码-SC-CNNSC-CNN
在这个项目中,我们试图实现灰色模型Matlab原始代码SC-CNN。请注意,代码正在更新中,并未完全完成。当前阶段已经实现了SC-CNN的第一部分。该代码使用的数据集与文中提到的数据集相同,同时也适用于其他数据集的训练。我们计划对代码进行进一步更新以解决已知问题,但目前仅使用主要数据集进行开发。请注意,无需手动下载数据集,所有数据处理均由代码完成。该代码基于Pytorch编写,支持在CPU或GPU上运行,也可以在多个GPU上并行运行。详细的运行说明可以在代码中找到。
MATLAB中CNN水果分类示例的简单代码
这些代码是基于卷积神经网络的水果图像处理示例,作为论文“卷积神经网络应用于水果图像处理的回顾”,Applied Sciences,10(10):3443(2020)的一部分而实现的。展示了水果分类和质量控制示例的实现方法,同时使用预训练模型进行了转移学习。示例以简单方式演示了CNN模型的实现方法,并且代码已注释并提供了描述性信息。详情请阅读原论文,也可在我们的实验室LITRP网站上获取代码。
MATLAB CNN for CFD钝体流体力预测示例代码
MATLAB的CNNforCFD源代码包含一个示例代码,用于使用卷积神经网络预测钝体流的流体力。该代码在MATLAB 2017b版本上开发,并使用MATLAB-Neural Networks Toolbox。要使用此代码,用户需要确保他们具有MATLAB 2017b或更新版本,且带有Neural Networks Toolbox。 该存储库包含以下文件:- 'CNNforCD.m':用于基于CNN的阻力系数预测的示例MATLAB代码。- 'TrainingSetSmooth.mat':输入13种不同钝体的几何函数。- 'TestSet.mat':包含TrainingSetSmooth.mat中不包含的14种不同钝体的输入函数。- 'CDFOM.mat':对于雷诺数=100的流,TrainingSetSmooth.mat中的钝体的平均阻力系数,使用CFD模拟计算得出。 要运行该程序,请下载上述所有文件并将它们存储在一个目录中。文件SemiSubCNN.zip包含训练有素的CNN,用于预测不同半潜式模型的升力系数。 使用说明:1. 下载并解压文件。2. 确保已安装合适的MATLAB版本和工具箱。3. 运行CNNforCD.m进行钝体流的流体力预测。 该项目通过应用卷积神经网络,展示了如何在CFD仿真中利用深度学习技术提高预测精度。
红外动作识别的全局时间表示CNN代码及数据
视频图matlab代码主页:论文“基于全局时间表示的CNN用于红外动作识别”的代码抽象。红外人体动作识别具有多种优势,对光照、外观和阴影变化不敏感。现有方法虽有基于空间或局部时间信息,未考虑全局时间信息对视频中身体运动的更佳描述。本研究提出光流堆叠差异图像(OFSDI)作为新的全局时间表示形式,综合局部、全局和空间时间信息,从红外动作数据中提取鲁棒且判别性强的特征。利用局部、空间和全局时间流应用CNN获取有效的卷积特征图,并通过轨迹约束池聚合为三流轨迹合并的深度卷积描述符(TSTDD)。采用局域约束线性编码(LLC)方法提高特征鲁棒性,并通过线性SVM对动作数据进行分类。实验在红外动作识别数据集InfAR和NTU RGB + D上验证了该方法的优越性。
Matlab分时代码弱监督下的快速R-CNN检测优化
Matlab分时代码经过修改,使得快速R-CNN能在无bbox注释的弱监督环境下运行。快速R-CNN是由Redmond的Microsoft Research的Ross Girshick开发的基于快速区域的卷积网络,用于对象检测。该框架训练速度显著优于传统的R-CNN和SPPnet,并且在PASCAL VOC数据集上表现出更高的mAP。
优化matlab转c代码P-CNN动作识别中的性能提升
该软件包包含P-CNN算法的Matlab实现,基于姿势的CNN功能用于动作识别。它集成了预训练的vgg-f外观模型和流模型的Matlab版本,以及Brox光流实现。CNN实现依赖MatConvNet库,在CPU模式下编译。为了提升计算速度,建议启用GPU支持。您可以通过修改提供的my_build.m文件来定制编译设置。演示示例展示了在JHMDB数据集上运行P-CNN的效果。 reproduce_ICCV15_results命令可再现P-CNN的性能。
ECCV16单图像去雾MatConvNet模型代码-Multi-scale-CNN-Dehazing
MatConvNet基于ECCV16论文的实现,采用多尺度卷积神经网络进行单幅图像去雾。我们提供了测试演示和预训练模型,适用于Win7电脑。
深度学习入门指南:CNN & Caffe 实践
天津大学机器学习与数据挖掘团队倾情奉献,带你探索 CNN 的奥秘,并通过 Caffe 深度学习框架进行实践。
地下水位预测的神经网络代码比较LSTM、CNN和NARX
该存储库提供基于人工神经网络的地下水位预测代码比较,包括长短期记忆(LSTM)、卷积神经网络(CNN)和非线性自回归外生网络(NARX)的应用。作者列出了每种方法的优势和适用场景,并提供了Matlab和Python脚本以及示例文件,帮助用户复现和应用这些预测模型。
CNN应用于数据挖掘的案例
基于Python3.7和Pytorch1.7.1 多分类,采用深度学习