cryptography research

当前话题为您枚举了最新的 cryptography research。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Visual Cryptography Scheme Generate 2-out-of-2Shares in MATLAB
该程序实现生成二分之二的Visual Cryptography Scheme共享。要求输入图像为二进制图像,程序会输出两个份额及它们重叠后的结果。Share 1和Share 2可以分别打印在透明纸上,叠加显示出秘密图像。此方法实现了高安全性的图像加密与解密。
Cognitive Radio Technology Development Trends and Research Status
概述 探讨认知无线电技术(Cognitive Radio Technology, CRT)的国际国内发展现状及其研究趋势。通过对2000年至2020年间所有关于CRT的文章进行统计分析,并以表格的形式展现,该文深入分析了CRT的总体研究情况、系统结构设计、频谱感知、频谱决策、频谱共享、频谱切换等方面的研究进展,并对现有研究成果、未来研究方向及存在的问题进行了综合性的总结和展望。 系统结构设计 集中式结构:早期广泛采用,中心节点管理控制,灵活性差。 分布式结构:逐渐重视,节点自主决策,增强适应性。 混合结构:结合集中与分布优势,成为研究热点。 频谱感知 基本原理:关键技术之一,用于检测未使用的频谱资源。 研究进展:从理论探索到实际应用,感知准确度不断提高。 挑战与机遇:高速移动场景中保持高效感知是挑战,人工智能应用提供新可能。 频谱决策 定义:根据环境信息进行频谱选择的过程。 研究现状:算法改进使决策更智能高效。 未来发展:精准快速的频谱决策将是重点。 频谱共享 概念:探讨多用户共享频谱的有效方法。
Acycle Time Series Analysis Software for Research and Education
Acycle: Acycle是一个用于研究和教育的时间序列分析软件,提供强大的分析工具和用户友好的界面,适合学术研究和教学使用。
LTV Homomorphic Encryption Scheme MATLAB Code for Research Purposes
The LTV-MATLAB model is a MATLAB implementation of the LTV homomorphic encryption scheme used for research purposes. It includes a full adder homomorphic circuit for experimentation and analysis. This code allows researchers to explore homomorphic encryption techniques and their applications in secure computation, maintaining privacy during data processing while enabling arithmetic operations on encrypted data.
Web_Data_Mining_Based_Personalization_Technology_Research.pdf
站点个性化技术的必要性:随着互联网用户数量的剧增,Web站点面临用户需求多样化的问题。传统的Web系统为所有用户提供相同的服务,无法满足用户个性化的需求。因此,提供个性化服务成为Web站点发展的重要趋势。个性化服务可以通过减少用户寻找信息的时间,提高浏览效率,从而增强用户体验。 个性化技术的基本思路:个性化技术包括收集用户的访问信息、分析这些信息,并根据分析结果向访问者提供合适的信息。其核心在于构建用户的特征模型,并将信息主动推送给符合特征的用户。这包括寻找与用户特征相匹配的信息,或者在用户群体中推荐感兴趣的信息。 常用个性化技术的局限性:过去在个性化服务领域中,协同过滤技术被广泛运用,但该技术存在依赖用户提供的主观评价信息、处理大规模数据困难、评价信息可能过时、使用不便等缺点。随着应用环境的变化,协同过滤技术的缺点逐渐凸显。 Web数据挖掘技术在个性化推荐中的优势:将Web数据挖掘技术应用于个性化推荐领域能够解决协同过滤技术存在的问题。Web数据挖掘技术不依赖用户主动提供的评价信息,甚至不需要用户的注册信息,且能够处理大规模数据量。大数据环境是Web数据挖掘技术的优势所在,它有望实现动态的个性化推荐系统,为用户提供更为准确和高效的服务。 基于Web数据挖掘的站点个性化模型:提出一种基于Web数据挖掘的个性化站点模型,该模型的关键技术包括目标样本的特征提取、用户访问模式的分析、个性化推荐数据的生成等。这些技术的实现是个性化推荐系统动态组装和个性化站点动态呈现的基础。 目标样本的特征提取技术:使用向量空间模型(VSM)来表示目标信息,通过特征词条及其权值来评价未知文本与目标样本的相关程度。特征提取的关键在于选择能够体现目标内容且能区分其他文档的特征项集。词条权重的计算考虑了词条在文档中的出现频率和文档出现的频率,以确保能够准确地反映目标信息。 Web数据挖掘技术的其他关键应用:Web数据挖掘技术不仅应用于个性化推荐系统,还可以用于搜索引擎、信息获取等领域。在搜索引擎中,Web数据挖掘有助于提高查询结果的准确性和排序的相关性;在信息获取方面,帮助用户从海量信息中快速找到所需的资源。 个性化推荐系统的实际应用:个性化推荐系统在电子商务等动态网站中得到了广泛的应用。它通过分析用户历史行为数据,为用户提供量身定制的商品推荐,提升了用户的购买体验,并有效提高了网站的转化率。
Machine Learning in Matlab Background Separation Techniques for Particle Physics Research
在粒子物理学研究中,背景分离技术是数据分析的重要部分,尤其是在信号与背景的分类中,信号代表我们感兴趣的粒子事件。我使用了多种机器学习技术,尤其是背景分离,来进行数据分析,以获得在其他数据集上的分析经验。本研究包括了在Coursera的Andrew Ng机器学习课程中的一些项目,这些项目使用了Matlab进行实现。 Matlab作为一种高级科学计算语言,能够处理各种机器学习任务,特别是信号与背景的分类。课程内容包括线性回归、逻辑回归、神经网络、支持向量机、K均值聚类等常见模型的应用。这些模型的实现涉及到诸如梯度下降、成本函数等技术细节。 例如: 例1:在练习1中,我们使用了线性回归模型,通过输入值预测实值输出,应用于房价预测,重点讨论了成本函数的概念,并实现了梯度下降算法。 例2:在另一个练习中,我们构建了逻辑回归模型,以预测学生是否能被大学录取。 这些方法的实现需要通过Octave或MATLAB来进行,帮助我们深入理解并实践机器学习算法的核心原理。
JSP-SQLSERVER-Hotel-Room-Management-System-Research-Paper
【原创】基于JSP和SQLSERVER的酒店客房信息管理系统(查重通过) JSP与SQLSERVER技术结合,为酒店客房管理系统提供了一个高效的解决方案。 系统通过数据库交互,实现了客房的增、删、改、查功能,并优化了用户界面。 使用SQLSERVER作为后端数据库,确保了数据的稳定性和安全性。 论文详细描述了系统的设计流程、技术选型及实现方法,并进行了数据测试和性能评估。 系统不仅提升了酒店管理效率,还大大优化了客户的预定体验。 关键技术:JSP, SQLSERVER, 酒店管理系统 该系统具备高度的可扩展性,可根据需求进一步开发新的功能模块。
Research and Application of MOOC Platform Learning Analytics Algorithm Based on Big Data
Big data technology has become a hot research topic in the field of education, focusing on analyzing large amounts of educational data collected to improve teaching methods and enhance education quality. Among educational big data, learning analytics is particularly important, as it helps teachers understand students' learning progress and implement personalized teaching, thus promoting teaching reform. In higher education, the application of big data-based learning analytics technology can monitor students' learning processes. By analyzing students' behavioral patterns during the learning process, teachers can gain a more intuitive understanding of each student's performance. This technology provides a series of insights such as 'who is learning', 'what is being learned', and 'how well students are learning', which is crucial for ensuring educational quality. Data collection is the first step in big data learning analytics, which involves utilizing various technical means to gather data from different sources. In the context of online education, the primary source of data is students' online behavior during the learning process. This data includes but is not limited to, video viewing patterns, discussion board participation scores, assignment scores, exam results, and forum interaction scores. These data need to be collected using appropriate tools such as web crawlers written in Python or by calling data through API interfaces. Once the data is collected, the next step is data preprocessing. This stage involves cleaning the data, removing unreliable data points like test accounts and extreme outliers. The goal of preprocessing is to ensure the accuracy of subsequent analysis, structure the data for easy storage, and prepare it for analysis. Data analysis is the core part of learning analytics and primarily includes statistical analysis and visualization, clustering analysis, predictive analytics, association rule mining, and text mining. These methods help teachers gain deeper insights into students' behavioral patterns, learning habits, and performance trends. Statistical analysis and visualization transform data into charts and graphs for intuitive representation of students' learning progress. Clustering analysis groups students by learning habits or grades, while predictive analytics forecasts students' future performance based on historical data. Association rule mining focuses on identifying relationships between students' behaviors, and text mining analyzes content from discussion boards to understand students' learning attitudes and thought processes. The application and development of big data in education holds great potential. With the rapid growth of global data, educational big data is gradually becoming a field of focus both domestically and internationally, offering significant value in education. In practical projects, the application of learning analytics has already shown results. For example, a research project mentioned in the article uses the 'C Programming 1' course on a MOOC platform to analyze students' learning behavior data combined with performance data to help teachers better understand students' progress and offer reasonable teaching suggestions. The application of big data in education, particularly in learning analytics on MOOC platforms, is becoming a key driver of educational reform.
Research_on_Smart_Services_for_Psychological_Crisis_Warning_in_Colleges_Based_on_Big_Data.pdf
本研究探索基于大数据的高校心理危机预警系统的智能服务应用。通过分析学生的心理健康数据,结合现代信息技术,设计出一种智能化的心理危机干预机制。系统利用大数据分析学生的行为、情感及心理变化,从而及时预测并预警潜在的心理危机情况,提供个性化的心理辅导和干预服务。该研究不仅能够有效帮助高校管理层早期发现学生心理问题,还能为心理健康教育提供数据支持,提升心理危机应对能力。
Adobe Research专家探索Spark在数字营销中的分布式强化学习应用
Nedim Lipka,Adobe Research系统技术实验室的研究专家,专注于机器学习和数据挖掘。他最近的研究方向包括可扩展的强化学习算法,以及Spark和Hadoop等大数据技术。在最近的峰会上,他深入探讨了利用Spark在数字营销中实现分布式强化学习的创新应用。