Learning Resources

当前话题为您枚举了最新的 Learning Resources。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

mysql_learning_resources
MySQL必知必会的资源,适合MySQL学习。
Simple Oracle Learning Resources
Oracle学习资料,我学Oracle的时候记下来的,只有一部分!呵呵!仅供参考,大家一起进步
Oracle Database and Python Script Learning Resources (English)
Looking to enhance your technical skills for global opportunities? Explore these valuable learning resources for Oracle Database and Python scripting, all presented in English:
Data Mining Learning Resources and Final Exam Review Key Points
数据挖掘是一种从海量数据中提取有价值知识的过程,结合了统计学、机器学习和数据库技术。在南京工程学院数据科学与计算机专业的课程中,数据挖掘是一门重要的专业课程,培养学生的数据分析能力,帮助他们理解并应用相关算法解决实际问题。 在数据挖掘的学习过程中,我们首先需要了解数据预处理的基本步骤,包括数据清洗(如处理缺失值、异常值和重复值)、数据集成(将来自不同来源的数据合并)和数据转换(如规范化、离散化)。这些预处理步骤对于确保后续分析的有效性和准确性至关重要。 接着,我们要深入学习各种数据挖掘方法,其中分类、聚类和关联规则是最基础的三类。分类是通过训练模型预测目标变量的类别,常见的算法有决策树、随机森
Gradient Design Resources
This archive contains resources related to gradient design.
Modeling Toolbox for MATLAB Resources
不错的东西,建模资源 matlab工具箱。
MySQL_Advanced_Resources_Package
MySQL进阶资源包内容概要 MySQL-进阶.d是一个专注于MySQL数据库进阶学习的资源包。它涵盖了MySQL的高级特性、性能调优、安全配置、扩展与集群、数据备份与恢复等多个方面。资源包中包含了详细的教程、案例分析、实践练习、视频教程和参考文档,帮助数据库管理员(DBA)和开发者深入理解和应用MySQL的高级功能,提升数据库系统的性能和安全性。 适用人群 已有MySQL基础知识并希望进一步深造的数据库管理员(DBA) 需要优化现有数据库系统性能的开发者 对MySQL扩展、集群和高级特性感兴趣的技术爱好者 追求数据库技术前沿,希望不断提升自我能力的IT专业人士 使用场景及目标 性能调优
Deep Learning Trends and Fundamentals
深度学习历史趋势 一、深度学习历史趋势 神经网络的众多名称和命运变迁: 早期发展:20世纪50年代末至60年代初,神经网络研究开始兴起,受到广泛关注。 第一次寒冬:1970年代,由于理论和技术上的限制,神经网络研究进入低谷期。 反向传播算法的引入:1980年代中期,反向传播算法的提出极大地推动了神经网络的研究和发展。 第二次寒冬:1990年代中期,尽管有了突破性的进展,但由于计算资源和数据量的限制,神经网络再次遭遇挫折。 深度学习的复兴:21世纪初至今,随着GPU技术的发展、大数据时代的到来以及算法的不断创新,深度学习迎来了爆发式的增长。 与日俱增的数据量: 互联
Data-Science-R-Resources-and-Study-Plan
这是一个R的数据科学资料库,涵盖统计分析、学习和整体数据科学相关的所有资源。我将上传自己编写的.R代码,以供将来参考。我的目标是在一年内完成以下内容(将持续更新): 2015年夏季 漩涡 + Coursera的数据科学课程[1, 2] 描述性统计简介 + 推断性统计简介(Udacity) 使用R进行数据分析(Udacity) 2015年秋季 Coursera数据科学课程[3, 4, 5, 6, 7] 统计学习(斯坦福) + 教科书 2016年春季 Coursera数据科学课程[8, 9] 面向黑客的机器学习教科书 Coursera数据科学专业课程 (1) 数据科学家工具箱(Cou
Bi-LSTM MATLAB Code and Data Science Notes Deep Learning,Machine Learning,and More
Bi-LSTM MATLAB Code – DataScience-Notes 数据科学笔记。提供有关数据科学的笔记、代码和实例,涵盖数学、统计、机器学习、深度学习等基础知识及相关应用场景。参考资料已在最后列出。大部分代码采用Python编写,涉及的库及框架包括: NumPy、SymPy、Scikit-learn、Gensim、TensorFlow 1.X、TensorFlow 2.X 和 MXNet。部分数值分析代码则使用MATLAB编写。 注释:- (notebook): Jupyter Notebook 文件链接- (MATLAB): 相应的 MATLAB 代码链接- (md): M