滤波

当前话题为您枚举了最新的滤波。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Gabor滤波
输入图片路径,生成40次卷积结果,每个结果转换为一维向量,并串联所有结果。
事件概率计算:卡尔曼滤波、H∞滤波及非线性滤波应用
探讨在 X 和 Y 中至少有一个小于 0.5 的概率,以及从 (0,1) 中随机选取两个数,其积不小于 3/16 且其和不大于 1 的概率的计算方法。 问题一:假设 X 和 Y 是随机变量,求 X 和 Y 中至少有一个小于 0.5 的概率。 问题二:假设 X 和 Y 分别表示从 (0,1) 中随机选取的两个数,求其积不小于 3/16 且其和不大于 1 的概率。 这两个问题涉及概率计算,可以使用卡尔曼滤波、H∞滤波和非线性滤波等方法来解决。这些方法可以用于估计系统的状态,并基于这些估计来计算事件的概率。
MATLAB代码均值滤波与中值滤波对比
这段MATLAB代码可以用于比较图像处理中的均值滤波和中值滤波效果。
深入解析:卡尔曼滤波、H∞滤波与非线性滤波的优越性
滤波技术对比分析 卡尔曼滤波、H∞ 滤波和非线性滤波,各自在状态估计领域中扮演着重要的角色,它们针对不同的应用场景和噪声特性,提供了独特的优势: 卡尔曼滤波: 在处理高斯白噪声线性系统时,卡尔曼滤波能够提供最优的估计结果。它基于系统的状态空间模型,通过预测和更新步骤,不断修正对系统状态的估计,从而实现对系统状态的实时跟踪。 H∞ 滤波: 当系统受到未知的噪声或干扰时,H∞ 滤波能够有效地抑制噪声的影响,保证估计误差在一定范围内。它通过最小化估计误差的 H∞ 范数,实现对系统状态的鲁棒估计。 非线性滤波: 针对非线性系统,非线性滤波提供了多种方法来应对状态估计的挑战,例如扩展卡尔曼滤波 (EKF)、无迹卡尔曼滤波 (UKF) 和粒子滤波 (PF) 等。这些方法通过不同的线性化或采样技术,近似非线性系统的状态估计问题,并提供相应的解决方案。 总而言之,选择合适的滤波方法取决于具体的应用场景和噪声特性。卡尔曼滤波适用于线性系统和高斯白噪声,H∞ 滤波适用于存在未知噪声或干扰的情况,而非线性滤波则适用于非线性系统的状态估计。
频域图像滤波
对图像应用指定的频域滤波器,生成输出图像。 滤波器类型: “lpf”:理想低通滤波器(锐化) “glpf”:高斯低通滤波器
统计量及其分布:估计最优状态-卡尔曼滤波、h∞滤波和非线性滤波
总体:该地区的所有电视用户 样本:被访问的电话用户 总体:任意100名成年男子中吸烟人数 样本:50名学生调查所得的吸烟人数,每位学生调查100人 总体:每一盒盒装产品的不合格品数 样本:被抽取的n盒产品中每一盒的不合格品数 总体:鱼塘中的所有鱼 样本:一天后再从鱼塘里打捞出的一网鱼 总体:该厂生产的全体电容器的寿命 样本:被抽取的n件电容器
Matlab_中值滤波与均值滤波_对比分析
在Matlab中,使用中值滤波和均值滤波对添加了高斯噪声和椒盐噪声的图像进行处理,可以显著提高图像质量。中值滤波更适合去除椒盐噪声,而均值滤波则能平滑图像,但可能会模糊细节。
双边滤波 MATLAB 函数
提供了一个可设置方差的双边滤波函数,供 MATLAB 用户使用。
维纳滤波案例研究
展示了维纳滤波的应用 提供了实现案例的详细说明 包含了算法的逐步分解 涵盖了滤波器的设计和实现
匹配滤波代码-LFtoolbox
MATLAB 代码用于执行匹配滤波