降维
当前话题为您枚举了最新的 降维。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
PCA降维算法实现
PCA 降维方法的代码实现,挺适合数据和机器学习的小伙伴。你可以用它来高维数据,你降低模型复杂度,提升计算效率。其实,PCA 的核心思想是把数据从高维空间映射到低维空间,保留主要特征,去掉噪声。这对图像、数据降维等领域有用。
在 MATLAB 里实现 PCA 也比较简单,流程大致是:先标准化数据,再计算协方差矩阵,求特征值和特征向量,进行数据转换。你可以通过princomp函数轻松完成这些操作。PCA 的优势是降维高效,但对于非线性数据效果不太好,这时候可以尝试其他降维方法,比如ICA或LLE。
如果你有实际的项目需求,这段代码应该能帮到你。别忘了,代码的实现不仅是学习 PCA 的好机会,还能
Matlab
0
2025-06-13
数据降维Aotucoder优化
算法自编码是一种数据降维工具,特别适用于Matlab环境中的优化。
Matlab
14
2024-08-18
Matlab实现LLE降维算法
使用Matlab实现的LLE算法,该方法可以对高维数据进行有效的降维处理。LLE(局部线性嵌入)是一种基于非线性降维的算法,能够在保留数据局部结构的同时,减少数据的维度。通过计算每个数据点的局部邻域关系,LLE将这些数据映射到低维空间,保持数据的局部几何特性。
数据预处理:加载并规范化输入数据。
构建邻接矩阵:计算每个点的最近邻。
计算重构权重:通过最小化重构误差计算每个点的权重。
降维:通过求解特征值问题得到低维表示。
这段代码可以帮助用户快速实现LLE算法,进行数据降维,方便进行后续的数据分析与可视化。
Matlab
16
2024-11-06
主成分分析:降维利器
想象一个高斯分布,它的平均值位于 (1, 3),在 (0.878, 0.478) 方向上的标准差为 3,而在正交方向上的标准差为 1。黑色向量表示该分布协方差矩阵的特征向量,其长度与对应特征值的平方根成比例,并移动到以原始分布平均值为原点。
主成分分析 (PCA) 是一种强大的降维技术,广泛应用于多元统计分析。它通过识别并保留对数据方差贡献最大的主成分,在降低数据维度的同时最大程度地保留数据信息。
统计分析
14
2024-05-21
MATLAB实现PCA光谱降维程序
MATLAB实现的PCA光谱降维程序,专注于光谱数据的降维处理。
算法与数据结构
8
2024-08-08
34种数据降维方法代码
34种数据降维方法代码.zip
统计分析
9
2024-07-12
DCT高维数据降维预处理
高维数据的 DCT 降维预,真的是个挺好用的小技巧。DCT原本是用在图像压缩上的,讲究的是“能量聚集”,也就是说能把大部分有用信息集中到少数几个系数里。你拿它来做降维之前的,效果还挺惊喜的,维数一下子就下去了。
DCT 的保距特性,在降维场景里也挺重要的。它不会随便把数据间的距离关系搞乱,换句话说,结构还在。尤其是遇到超高维的情况,比如几百上千维,直接上降维算法容易跑飞,加个 DCT,后面起来就轻松不少。
实验数据也有支撑:加入 DCT 之后不仅加快了速度,还能缓和噪声带来的干扰。像你做聚类或者分类那种结构依赖型的,这个预会蛮有的。要注意的一点是,DCT 后的数据,最好做个归一化再往下喂,不然
算法与数据结构
0
2025-07-02
Nonlinear Dimensionality Reduction非线性降维方法
非线性降维方法的算法实现和数学直觉写得蛮透彻的,从主流方法到新兴思路,讲得都比较清楚。尤其适合你在做高维数据可视化、聚类前或者数据压缩时拿来参考。每种方法从直觉出发,推导公式再给出实现思路,读起来也不会太抽象。你要是平时写 Python 或搞数据的,肯定能用上。像 Isomap、t-SNE、LLE 这些,基本都有系统。配合下面这些主成分的链接一起看,理解更全面。
算法与数据结构
0
2025-06-23
matlab的LE降维算法代码.zip
matlab的LE降维算法代码.zip
Matlab
14
2024-07-30
MATLAB下CroppedYale人脸数据的降维方法
使用MATLAB编写的代码对CroppedYale人脸数据进行降维,比较了PCA、SVD及MATLAB自带的PCA算法的时间和准确度。分析了中心化对PCA的影响,并对比了PCA与SVD的异同。选取了适当的维度k,并展示了k个特征向量对应的图像。还评估了自行实现的PCA算法与MATLAB自带函数的性能。
Matlab
12
2024-07-21