RNA-seq
当前话题为您枚举了最新的 RNA-seq。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
RNA-seq分析流程基础指南
这篇指南演示RNA-seq分析的基本流程及其背后的差异基因表达检测。在开始操作之前,建议您先了解一些生物信息学和癌症基因组学的背景知识。将解释基因表达的概念,包括相对值和绝对值的区别,以及单核苷酸多态性和体细胞突变的解释。此外,您还将了解高通量测序(例如illumina)的原理,以及fastq文件和gtf文件的格式。最后,介绍如何使用TCGA数据库及在线工具进行分析,涵盖了cBIportal和GEPIA2的应用。
统计分析
2
2024-07-15
使用Matlab进行RNA-seq数据处理的自动矩阵拼接方法
Matlab的矩阵自动拼接功能不断扩展,适用于RNA-seq相关工具和基因组数据分析资源。可以通过FastQC / MultiQC、TrimGalore、STAR(两次通过模式)、RSEM(用于异构体定量)、DESeq2等工具进行处理。使用ERCC进行标准化,生成未归一化和归一化计数数据。进一步进行PCA、热图及其他可视化分析。
Matlab
0
2024-08-19
RNA测序数据分析中的计算挑战
高通量RNA测序(RNA-Seq)技术的出现为解决以往难以攻克的生物学难题提供了新的途径。通过对转录组进行全面分析,RNA-Seq能够实现对样本中所有基因及其异构体的完整注释和定量。然而,要充分发挥RNA-Seq技术的潜力,需要越来越复杂的计算方法来应对数据分析带来的挑战。
算法与数据结构
4
2024-06-30
Matlab与CCS生成代码Seq6DofManip论文代码
这是用于复制Marcus Gualtieri和Robert Platt撰写的论文“通过分层空间注意力学习操纵技巧”中的模拟实验的代码。详细信息请参见我的网站。该代码与早期的6自由度版本相似,但速度更快,更易上手。入门方法包括选择不同的域,从“磁盘上的钉子”到“杯垫上的瓶子”。非表格域需要安装Keras、TensorFlow、PointCloudsPython和OpenRAVE。代码已通过TensorFlow 2.0测试。OpenRAVE的安装说明可供参考。Matlab用于绘制结果,但非必需。对于“杯垫上的瓶子”,使用名为python/generate_*的脚本生成对象网格。调整脚本中的路径后,运行python/train.py train_params以训练。
Matlab
0
2024-09-26
RNA二级结构预测中的粗糙集应用
利用粗糙集算法及其工具Rosetta软件,建立了一种RNA保守功能二级结构预测方法。该方法通过数据挖掘,从整理和离散化的RNA碱基对数据中生成规则,从而确定保守二级结构中的碱基对。在HIV病毒REV应答元件单元保守二级结构预测中,粗糙集方法比传统算法预测的结构与野生型更相似,功能结构分支更清晰。
数据挖掘
4
2024-05-25
miRNA-seq分析:COVID-19患者miRNA谱的鉴定和表征
描述COVID-19患者的临床特征。
识别和量化血浆样品中的已知miRNA。
发现和量化新的人类miRNA。
分析miRNA与COVID-19预后之间的关联。
统计分析
8
2024-05-16
matlab寻峰代码单细胞染色质免疫切割测序(scChIC-Seq)分析工具库
该工具库包含多个部分,用于描述论文中的分析过程,涵盖组蛋白修饰信息的分析。用户可以从GitHub下载文件,将目录更改为CRK,然后进行进一步的分析。同时,从GEO网站下载GSE105012_RAW.tar文件,并保存到GSE105012文件夹中。
Matlab
3
2024-07-28
MATLAB AMI代码基于深度双随机图正则化矩阵分解的单细胞RNA测序细胞类型检测
这篇论文提供了一种基于深度双随机图正则化矩阵分解的方法,用于单细胞RNA测序中的细胞类型检测。编码使用MATLAB实现,主要包括 run_DSINMF.m、factorization_AB.m、factorization_BF.m、constructW.m、NormalizeUV.m、bestMap.m、compute_NMI.m、AMI.m 和 ARI.m 等文件。用户需下载DSINMF文件夹,并参照README.doc进行操作。
Matlab
0
2024-08-08