高斯噪声

当前话题为您枚举了最新的 高斯噪声。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

fftfgn:高效利用FFT模拟分数高斯噪声
该方法通过FFT技术生成分数高斯噪声,本质上是分数布朗运动的增量过程。 当Hurst指数 0 < H> 当Hurst指数 1/2 < H>
matlab生成高斯白噪声的函数总结
以下是matlab生成高斯白噪声的两个函数的详细总结。
Matlab处理高斯噪声图像的降噪技术
在处理添加了高斯噪声的图像时,可以采用均值滤波和中值滤波等技术进行降噪。Matlab提供了有效的工具和算法来实现这些技术。
高斯白噪声多变化点检测:PARCS 代码
PARCS MATLAB 代码用于通过成对自适应回归累加器 (PARCS) 检测多个变化点。该代码提供示例和演示,用于评估 CUSUM 和 PARCS 在不同噪声类型下的性能。代码使用 GPLv3 和知识共享署名许可证发布。
高斯白噪声MATLAB代码实现SP工具箱Scilab
在MATLAB中,SP工具箱Scilab的第一个功能是SINAD的计算。SINAD用于衡量通信设备信号质量,其计算公式为:SINAD = P(signal) / (P(noise) + P(distortion))。在Scilab中,需要创建与MATLAB相同功能的函数,确保准确计算信号和噪声失真比。输入变量包括:n,p(cos函数幅度),q(一次谐波幅度),r(加性高斯白噪声幅度),输出参数为:x和y,其中x为无噪声输入,y包含加性高斯白噪声。执行此代码时,请调用相应函数,并指定所需的n,p,q,r值。
高斯白噪声Matlab实现手指计数数字图像处理
这个项目使用Matlab完成,通过数字图像处理准确计数图像中的手指。项目文件夹包括数据文件夹,存放所有使用的图像;src文件夹,包含不同手指计数实现的源代码(将于7月底前删除);输出文件夹,存放项目构建时生成的文件。实现手指计数的过程涉及图像分割和连接组件标记,确保处理后图像不含噪音。具体步骤包括读取图像并分析直方图像素值,应用阈值进行图像二值化,填充和开操作以保持手部完整性,最终通过图像相减得出手指数量。
Matlab音乐生成器高斯白噪声代码详解及示例
这是一个使用Matlab R2020a编写的音乐生成器程序,专门制作了基于真人快打主题歌的10秒音频剪辑。在macOS Mojave上成功测试。您只需在Matlab中打开.m文件并运行,即可生成不同版本的音乐文件,包括原始版本“MortalKombat.wav”、添加高斯白噪声的版本“MortalKombatWithNoise.wav”和经过低通滤波器处理的版本“MortalKombatFiltered.wav”。同时还生成了这些音乐作品的时域和频域成分的频谱图。详细使用说明请参考项目描述。
自适应高斯机制中基于期望数据效用的条件滤波噪声
差异隐私在统计分析中广泛应用,保护个人敏感信息的同时确保数据实用性。然而,随机添加的噪声可能导致数据在不同隐私机制下的实用性无法预期。提出一种基于期望数据效用的自适应高斯机制,通过条件滤波高斯噪声,定义并最大化数据实用性。该机制结合了条件滤波噪声的概念,根据误差绝对值量化数据效用,并根据隐私预算调整噪声强度,以平衡隐私保护和数据实用性。
通过高斯白噪声信道的BPSK调制仿真与MATLAB实现
BPSK是一种利用二进制数字基带信号控制载波相位的调制技术,其传输过程中保持载波的振幅和相位不变。BPSK信号的调制方法包括模拟法和键控法,其中模拟法使用双极性非归零信号,而键控法则无此限制。在解调过程中,采用相干解调技术,并通过多种信道传输,包括高斯白噪声信道、瑞利信道和莱斯信道,最终实现基带数据的恢复。仿真过程中包括产生可调速率的数字基带数据,进行BPSK和QPSK调制,以及绘制信噪比-误码率曲线和星座图。理论计算与仿真结果的对比分析,以及GUI界面设计展示工作成果。
为输入信号添加高斯噪声以达到所需信噪比(SNR)- Matlab开发
此功能用于在无噪声输入信号中添加白高斯噪声,以实现指定的信噪比(SNR,以dB为单位)。