差异隐私在统计分析中广泛应用,保护个人敏感信息的同时确保数据实用性。然而,随机添加的噪声可能导致数据在不同隐私机制下的实用性无法预期。提出一种基于期望数据效用的自适应高斯机制,通过条件滤波高斯噪声,定义并最大化数据实用性。该机制结合了条件滤波噪声的概念,根据误差绝对值量化数据效用,并根据隐私预算调整噪声强度,以平衡隐私保护和数据实用性。