短期负荷预测
当前话题为您枚举了最新的短期负荷预测。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
梯度提升树短期用电负荷预测模型
短期负荷预测的梯度提升树系统,响应快、精度高,适合想提高用电预测效率的开发者使用,支持 C/S 架构搭建。
数据挖掘
0
2025-07-05
聚类分析驱动的短期电力负荷智能预测
短期电力负荷预测精度对电网企业的运营管理和调度管理至关重要。 针对电力负荷受多种非线性因素影响, 难以获得高精度预测结果的问题, 提出一种基于聚类分析的短期负荷智能预测方法。 该方法首先利用k-means聚类技术对训练集气象数据进行聚类分析, 提取相似日及其相关历史数据, 然后构建支持向量机模型进行短期电力负荷预测。 算例结果表明, 该方法预测结果平均相对误差为0.88%, 优于同结构支持向量机预测 (1.66%) 和ARMA预测 (3.81%)。
数据挖掘
13
2024-05-23
主成分分析优化遗传神经网络在电力系统短期负荷预测中的应用
针对传统BP神经网络训练速度慢、易陷入局部极小值等问题,该研究提出了一种基于主成分分析 (PCA) 和遗传算法 (GA) 的优化遗传神经网络模型。通过PCA提取负荷数据的主要特征,降低模型输入维度,并利用GA优化BP神经网络的结构参数,克服其局部收敛问题。实验结果表明,该方法有效提高了电力系统短期负荷预测的精度。
统计分析
18
2024-05-19
LM-BP电力负荷预测模型
LM-BP 的预测程序挺轻巧的,适合刚入门或者快速搭建电力负荷预测模型的朋友。虽然作者没附带.mat数据文件,但代码本身还挺清晰,适合自己拿数据试试。BP 神经网络加上LM 算法,收敛速度比较快,在电力数据这种周期性强的场景下,表现还不错。嗯,要是你之前接触过trainlm,应该能快上手。
程序用的Matlab 神经网络工具箱,核心是经典的误差反向传播算法,训练速度挺快,响应也快。不过要注意,自己用的时候记得先准备好标准化的数据,免得训练结果发散。
你要是对其他变种感兴趣,可以看看比如Elman 神经网络或者遗传算法优化 BP那类,网上也有不少资源,我挑了几个靠谱的放下面了,懒得找的话直接点进
Access
0
2025-06-17
电力负荷预测综述及其重要性
电力负荷预测综述####一、绪论##### 1.1电力负荷预测研究意义电力负荷预测对电力系统规划和运营管理至关重要。它通过预测未来电力需求,为发电、输电和电能分配决策提供依据。精确的负荷预测可提高系统效率,确保电网稳定性和可靠性,优化资源利用,降低能源浪费和发电成本。此外,良好的预测也有助于推动电力系统的可持续发展,促进国民经济整体进步。 ##### 1.2国内外研究现状电力负荷预测在国内外历史悠久且不断取得新进展。国外已应用许多先进方法,而中国近年来也有显著进步,形成较为完整的预测体系。随着信息技术的快速发展,如人工智能、大数据分析等新技术的应用,电力负荷预测面临更多发展机遇。研究者正致力于
算法与数据结构
16
2024-08-23
MATLAB负荷预测基于人工神经网络(ANN)的预测方法
MATLAB负荷预测是一种基于人工神经网络(ANN)的先进预测技术。该方法利用MATLAB软件平台,通过分析历史数据和模式识别,实现对电力系统负荷未来趋势的精确预测。这种技术不仅提高了预测的准确性,还能帮助电力管理者优化资源分配和能源利用效率。
Matlab
8
2024-08-25
电力负荷预测模式的数据挖掘研究
电力负荷预测模式的研究显示,数据挖掘技术已经成为评估电力企业管理现代化和科学化的重要标志。在过去的十年中,中国在电力负荷预测方面取得了显著进展。
数据挖掘
11
2024-08-14
MATLAB BP神经网络预测实现及应用——电力负荷预测案例
基于 MATLAB 的 BP 神经网络预测代码,逻辑清晰、上手快,适合做电力负荷预测这类有时序特征的场景。代码结构蛮规整的,输入输出都好了,拿来改改参数就能跑。尤其是初学神经网络的朋友,搞清楚前向传播、误差反传这些细节有。哦对了,文件里还有个电力负荷的案例,挺贴近实际,用来练手再合适不过了。
Hadoop
0
2025-06-29
基于数据挖掘的负荷预测模型2003
基于数据挖掘技术的负荷预测模型,思路比较老但还挺经典的。粗集+遗传算法负责筛选变量,交给神经网络搞预测,整套流程清晰又实用。想做电力负荷预测的可以参考下,尤其是想在特征选择上精细点的同学,值得看一看。
数据挖掘
0
2025-06-14
负荷预测MATLAB代码的动态半参数因子模型
本存储库包含了研究文章“使用动态半参数因子模型进行的收益曲线建模与预测”中使用的MATLAB代码,作者为HärdleWolfgang Karl和Majer Piotr(2012),发表于CRC 649讨论文件,2012-48期。该研究利用动态半参数因子模型(DSFM)分析了欧元引入后的欧洲主权债务危机期间希腊、意大利、葡萄牙和西班牙四个南欧国家的月利率。与动态Nelson-Siegel模型相比,研究发现DSFM技术能更好地捕捉每个债券市场收益率曲线的结构,尤其是斜率方面的变化。面板数据分析显示,需要三个非参数因子来解释95%的收益率变动,估计的因子负荷表现出较高的持久性。
Matlab
14
2024-09-26