针对传统BP神经网络训练速度慢、易陷入局部极小值等问题,该研究提出了一种基于主成分分析 (PCA) 和遗传算法 (GA) 的优化遗传神经网络模型。通过PCA提取负荷数据的主要特征,降低模型输入维度,并利用GA优化BP神经网络的结构参数,克服其局部收敛问题。实验结果表明,该方法有效提高了电力系统短期负荷预测的精度。
主成分分析优化遗传神经网络在电力系统短期负荷预测中的应用
相关推荐
MATLAB神经网络案例分析Elman神经网络用于电力负荷预测模型研究
MATLAB神经网络案例分析Elman神经网络在数据预测中的应用,专注于电力负荷预测模型的研究。
Matlab
0
2024-08-29
聚类分析驱动的短期电力负荷智能预测
短期电力负荷预测精度对电网企业的运营管理和调度管理至关重要。 针对电力负荷受多种非线性因素影响, 难以获得高精度预测结果的问题, 提出一种基于聚类分析的短期负荷智能预测方法。 该方法首先利用k-means聚类技术对训练集气象数据进行聚类分析, 提取相似日及其相关历史数据, 然后构建支持向量机模型进行短期电力负荷预测。 算例结果表明, 该方法预测结果平均相对误差为0.88%, 优于同结构支持向量机预测 (1.66%) 和ARMA预测 (3.81%)。
数据挖掘
4
2024-05-23
基于主成分分析与BP神经网络的客户信息流失预测模型分析
针对客户信息流失预测中缺乏有效数据挖掘手段的问题,提出了一种基于主成分分析与BP神经网络的信息流失预测模型。通过5折交叉验证,将模型应用于来自3个地市的营销样本,与未经主成分分析降维的BP神经网络方法进行了比较分析。实验结果显示,该模型不仅显著提高了平均预测分类精度(77.46%),还大幅减少了训练时间(2.18分钟),有效降低了属性维度并改善了预测能力。
数据挖掘
0
2024-08-18
Matlab基于遗传算法优化BP和小波神经网络的电力负荷预测
这是一个新人发帖,请大家多多支持!所包含的文件有:Figure39.jpg和bppfault.m。其中运行结果包括Figure40.jpg。
Matlab
0
2024-09-28
matlab实现遗传神经网络算法
这是一份详细说明如何利用matlab实现遗传神经网络算法的文件,适合于理解遗传算法和神经网络模型的学习和参考。
Matlab
2
2024-07-20
基于Elm神经网络的电力负荷预测模型MATLAB源码
介绍了基于Elm神经网络的电力负荷预测模型。首先,利用ELM(Extreme Learning Machine)算法构建神经网络模型,通过训练数据进行预测,进而实现电力负荷的预测。具体步骤包括:
数据准备:将历史电力负荷数据作为输入数据集。
数据预处理:对数据进行标准化处理,以提高模型的准确性。
构建ELM模型:采用单隐层前馈神经网络(SLFN),通过随机生成输入层权重,利用最小二乘法优化输出层权重。
模型训练:使用训练集进行模型训练,优化参数以提高预测精度。
预测与验证:通过测试集进行模型验证,评估其在实际应用中的效果。
该模型具有较好的泛化能力,能够有效提高电力负荷预测的准确性,具有较大的应用潜力。
源码附于文末,供读者参考和实践。
Matlab
0
2024-11-05
主成分分析
该压缩文件包含了有关主成分分析的信息和资源。
Hadoop
5
2024-05-13
电力系统模拟电力系统-MATLAB开发
MATLAB开发中的电力系统仿真
Matlab
2
2024-07-28
研究遗传神经网络的数据挖掘方法
本研究探讨了遗传神经网络在数据挖掘中的应用,重点分析其在处理复杂数据时的优势与效果。通过实验验证,提出了改进的算法,提高了挖掘效率。
数据挖掘
0
2024-10-31