规划问题
当前话题为您枚举了最新的规划问题。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
小白也能学规划问题
从 Lingo 入门数学建模,轻松理解 0-1 规划和整数规划。一步步掌握优化策略,成为数学建模高手。
统计分析
5
2024-04-30
状态压缩动态规划解决放置问题
在放置操作中,每一行有 w 个位置,因此每行状态可表示为 0 到 2^w - 1 的整数。
当前行的状态 s 由前一行状态 s' 转换而来。对于该行位置 j,状态转换规则如下:
若前一行位置 j 为 0,则该位置可以竖放,状态转换:0 -> 1
若前一行连续两个位置为 0,则这两个位置可以横放,状态转换:00 -> 00
若前一行位置 j 为 1,则该位置不可再放,状态转换:1 -> 0
算法与数据结构
3
2024-05-19
使用Matlab解决线性规划问题
四、在模型1中,由于a是任意给定的风险度,不同的投资者有不同的风险偏好。我们从a=0开始,以步长△a=0.001进行循环搜索,编写的程序如下:
Matlab
0
2024-09-01
搜索与动态规划:探究问题本质
探索问题,开启算法之门
深入探讨“为什么讲这个问题” ,可以引导我们更好地理解搜索和动态规划算法。 这两种算法体现了“电脑”和“人脑”在解决问题上的差异: 电脑擅长快速枚举, 而人脑更倾向于总结规律, 找到最优解。
通过“回到起点”和“变换角度”的思考方式, 我们可以不断优化解题思路, 将复杂问题分解成可解决的子问题。 动态规划正是利用了这种思想, 通过记录子问题的解, 避免重复计算, 从而提高效率。
算法与数据结构
2
2024-05-19
背包问题动态规划优化实战-MATLAB实现
背包问题的核心在于优化值的计算和元素的取用策略。通过动态规划,可以有效解决这些问题。以下是具体步骤:1. 优化值:通过构建一个二维数组,利用递推公式计算每个背包容量下的最大价值。2. 元素取用:从最后一个元素开始,逆向查找已选元素,确定哪些物品被纳入背包。
Matlab
0
2024-11-03
01背包问题与分数背包问题详解(动态规划与贪心算法)
01背包问题与分数背包问题是计算机科学中优化问题的经典实例,尤其在算法设计与分析领域中占有重要地位。这两个问题涉及如何在有限容量下选择物品以最大化总价值或效用。动态规划和贪心算法是解决这些问题的主要方法,每种方法都有其独特的优势和适用场景。动态规划将问题分解为子问题,并存储子问题的解以构建全局最优解。贪心算法则通过每步选择局部最优解,期望达到全局最优解。但对于01背包问题,贪心策略并不总是最有效的,因为简单选择最高单位价值的物品未必能实现最优解。分数背包问题允许物品分割使用,适用动态规划来解决,但其状态转移方程与01背包问题略有不同。这些问题在资源分配、任务调度等多个领域有广泛应用。掌握动态规划和贪心算法有助于解决这些优化问题并提升算法设计能力。
算法与数据结构
2
2024-07-17
01背包问题的动态规划算法详解
01背包问题是一个经典的组合优化问题,涉及算法和动态规划。其核心是在不超过背包容量限制的情况下,选择物品以最大化总价值。动态规划通过构建二维数组来解决该问题,避免重复计算,并确定每个物品的选择以及对应的最大价值。具体算法实现如下:初始化一个二维数组dp,其中dp[i][j]表示在前i个物品中,总重量不超过j时的最大价值。使用状态转移方程dp[i][j] = max(dp[i-1][j], dp[i-1][j-wt[i-1]] + val[i-1])来填充dp数组。最终的最大价值存储在dp[n][W]中,其中n是物品数量,W是背包容量。动态规划解决方案确保了在给定条件下找到最优解。
算法与数据结构
2
2024-07-16
基于Matlab求解非线性规划问题的主程序
主程序youh3.m的设置如下:x0=[-1;1]; A=[]; b=[]; Aeq=[1 1]; beq=[0]; vlb=[]; vub=[]; [x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')。运算结果显示:x = -1.2250,fval = 1.8951。
Matlab
1
2024-07-21
MATLAB实现模拟退火算法解决线性规划问题
介绍了MATLAB实现的模拟退火算法代码,适用于各类线性规划问题的求解。算法通过模拟物理退火过程,以随机扰动和概率接受机制来寻找问题的最优解。代码结构简洁,可根据实际问题进行调整优化,以实现全局最优或近似最优解。
代码实现步骤:1. 初始化温度和解的初始值2. 通过温度控制变化范围,生成新解3. 计算新解与旧解的差值,根据差值决定是否接受新解4. 随着迭代次数增加,逐渐降低温度5. 最终输出最优解。
Matlab
0
2024-11-06
回溯法解决资源约束下二维动态规划问题
利用回溯法解决资源约束下的二维动态规划问题
算法与数据结构
5
2024-05-20