数据结构动画解析
数据结构是计算机科学的核心概念之一,涉及如何有效组织和管理内存中的数据,以提高程序性能。本资源“数据结构原理动画”利用视觉化动画形式,帮助学习者直观理解抽象的数据结构概念。包括数组、链表、栈、队列、堆、哈希表、二叉树、图以及各种排序和查找算法的动态演示。通过这些动画,学习者不仅能掌握数据结构的基本操作,还能深入理解算法的工作原理。
SQLServer
0
2024-10-13
算法与数据结构解析
数据结构
数据结构阐述数据元素间的逻辑关系以及数据在计算机中的存储方式,并定义了针对每种数据结构的基本操作。
逻辑结构
线性结构:数组、链表
树形结构:二叉树、堆、B树
图结构:有向图、无向图
抽象数据类型:集合、队列
存储结构
数组:连续存储
链表:动态分配节点
树和图:邻接矩阵或邻接表
基本操作
插入、删除、查找、更新、遍历
时间复杂度和空间复杂度分析
算法
算法是将解决问题的步骤转化为计算机可执行指令的序列。
算法设计
将解决问题的步骤形式化
算法特性
输入、输出、有穷性、确定性、可行性
算法分类
排序算法:冒泡排序、快速排序、归并排序
查找算法:顺序查找、二分查找、哈希查找
图论算法:Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法
动态规划、贪心算法、回溯法、分支限界法
算法分析
时间复杂度
空间复杂度
总结
学习算法与数据结构有助于理解程序内部工作机制,并帮助开发者构建高效、稳定、易维护的软件系统。
算法与数据结构
4
2024-05-19
数据结构与算法解析
数据结构
数据结构描述数据元素之间的关系以及数据在计算机中的存储方式。* 逻辑结构: 描述数据元素之间的逻辑关系,例如线性结构(数组、链表)、树形结构(二叉树、堆、B树)、图结构(有向图、无向图)以及集合和队列等。* 存储结构(物理结构): 描述数据在计算机中如何具体存储。例如,数组的连续存储,链表的动态分配节点,树和图的邻接矩阵或邻接表表示等。
算法
算法是将解决问题的步骤形式化为一系列指令,使得计算机可以执行以求解问题。* 算法设计: 研究如何将解决问题的步骤形式化为一系列指令。* 算法特性: 包括输入、输出、有穷性、确定性和可行性。一个有效的算法必须能在有限步骤内结束,并且对于给定的输入产生唯一的确定输出。* 算法分类: 排序算法(冒泡排序、快速排序、归并排序),查找算法(顺序查找、二分查找、哈希查找),图论算法(Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法),动态规划,贪心算法,回溯法,分支限界法等。* 算法分析: 通过数学方法分析算法的时间复杂度(运行时间随数据规模增长的速度)和空间复杂度(所需内存大小)来评估其效率。
数据结构与算法的意义
学习算法与数据结构有助于理解程序的内部工作原理,并能帮助开发人员编写出高效、稳定和易于维护的软件系统。
算法与数据结构
2
2024-05-19
Redis内部数据结构解析
深入探讨Redis自定义数据结构,解析其内部运行机制,帮助读者更好地理解Redis的工作原理。
Redis
2
2024-06-30
Java数据结构与算法解析
数据结构
逻辑结构: 刻画数据元素间的关联,涵盖线性结构(数组、链表等)、树形结构(二叉树、堆、B树等)、图结构(有向图、无向图等)以及集合、队列等抽象数据类型。
存储结构(物理结构): 揭示数据在计算机中的实际存储方式,例如数组的连续存储、链表的动态节点分配、树和图的邻接矩阵或邻接表表示等。
基本操作: 每种数据结构都定义了一系列基本操作,包括插入、删除、查找、更新、遍历等,并分析其时间复杂度和空间复杂度。
算法
算法设计: 将解决问题的步骤转化为计算机可执行的指令序列。
算法特性: 包括输入、输出、有穷性、确定性和可行性。一个有效的算法必须在有限步骤内结束,并对给定输入产生唯一的确定输出。
算法分类: 涵盖排序算法(冒泡排序、快速排序、归并排序等)、查找算法(顺序查找、二分查找、哈希查找等)、图论算法(Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法等)、动态规划、贪心算法、回溯法、分支限界法等。
算法分析: 运用数学方法分析算法的时间复杂度(运行时间随数据规模增长的速度)和空间复杂度(所需内存大小),评估算法效率。
深入学习算法与数据结构,有助于理解程序内部机制,更能帮助开发者构建高效、稳定、易于维护的软件系统。
算法与数据结构
3
2024-05-25
黑马数据结构与算法解析
数据结构
逻辑结构: 揭示数据元素间的关联, 涵盖线性结构 (数组、链表)、树形结构 (二叉树、堆、B树)、图结构 (有向图、无向图) 以及集合、队列等抽象数据类型。
存储结构(物理结构): 阐述数据在计算机中的具体存储方式, 例如数组的连续存储、链表的动态分配节点、树和图的邻接矩阵或邻接表表示。
基本操作: 每种数据结构都定义了一系列基本操作, 包括插入、删除、查找、更新、遍历等, 并分析其时间复杂度和空间复杂度。
算法
算法设计: 将解决问题的步骤转化为计算机可执行的指令序列。
算法特性: 包括输入、输出、有穷性、确定性和可行性, 一个有效的算法必须在有限步骤内结束, 对给定输入产生唯一的确定输出。
算法分类: 涵盖排序算法 (冒泡排序、快速排序、归并排序)、查找算法 (顺序查找、二分查找、哈希查找)、图论算法 (Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法) 以及动态规划、贪心算法、回溯法、分支限界法等。
算法分析: 运用数学方法分析算法的时间复杂度 (运行时间随数据规模增长的速度) 和空间复杂度 (所需内存大小) 以评估其效率。
掌握算法与数据结构不仅有助于理解程序内部机制, 更能帮助开发者构建高效、稳定、易于维护的软件系统。
算法与数据结构
2
2024-05-25
Oracle 数据库块结构解析
Oracle 数据库块结构解析
Oracle 数据库以块为单位管理数据,每个数据库块包含以下几个关键部分:
块头 (Block Header): 存储块的元数据信息,如块地址、所属段类型等。
表目录 (Table Directory): 如果块中存储的是表数据,则该部分记录了块中存储哪些表的行数据。
行目录 (Row Directory): 指向块内每一行数据存储位置的指针数组。
空闲空间 (Free Space): 块中尚未使用的存储区域,用于容纳新插入或更新的数据。
行数据 (ROW DATA): 实际存储的表数据行。
Oracle
3
2024-05-28
Oracle数据库逻辑结构解析
Oracle数据库的逻辑结构自上而下可分为:
方案(Schema): 数据库用户的逻辑视图,包含该用户的所有数据库对象。
表空间(Tablespace): 数据库的存储逻辑单元,由一个或多个数据文件组成,用于存放数据库对象。
段(Segment): 用于存储特定数据库对象的存储结构,如数据段、索引段等,一个数据库对象对应一个或多个段。
区间(Extent): 段的空间分配单元,由多个连续的数据块组成,用于存储段的数据。
数据块(Data Block): 数据库最小的存储单元,由多个字节组成,用于存储实际数据。
各个逻辑结构层级之间存在包含关系,数据块组成区间,区间组成段,段组成表空间,最终构成完整的数据库。
Oracle
6
2024-05-28
ORACLE数据库逻辑结构解析
ORACLE的逻辑结构是由一个或多个表空间组成。一个表空间由一组段组成,一个段由一组范围组成,一个范围由一批数据库块组成,一个数据库块对应一个或多个物理块。
Oracle
0
2024-11-05