The atmospheric reanalysis products encompass four-dimensional gridded information of atmospheric variables such as temperature, pressure, humidity, wind speed, and direction over a historical period. These products can be widely applied in areas such as climate change, weapon system design, and other fields. In response to the data formats and application characteristics of reanalysis products, the general framework of the reanalysis product application platform adopts the classic MVC three-layer model, based on third-party software development and integration for decoding, statistical analysis, visualization, and standardized I/O interfaces. Previously, ASCII gridded data required users to export data in GRIB format, which involved time-consuming and cumbersome stitching software. The hybrid data management of points and surfaces enables efficient management of PB-level reanalysis products, with features such as high scalability and low latency. The point-surface hybrid management of field units and point units can meet the data retrieval needs of different temporal and spatial scales.
Atmospheric Reanalysis Product Application Platform General Framework and Component Design
相关推荐
Database_Course_Design_Framework
数据库课程设计是一个综合性的学习过程,让学生通过实际项目来理解和应用数据库理论、技术和工具。以下是一个关于数据库课程设计的基本框架和要点:
一、课程设计目的数据库课程设计的主要目的是在学生系统地学习了数据库原理课程后,通过综合运用所学知识,设计并开发一个小型的管理信息系统(MIS)。这一过程培养学生的动手能力,使他们能够将书本上的知识用于解决实际问题,并深入理解和灵活掌握教学内容。
二、课程设计内容数据库课程设计通常包括以下几个方面的内容:
需求分析:
功能需求界定:明确系统的目标用户群、业务流程以及所需处理的数据类型。
需求规格说明书:编写详细的文档,包括系统的输入输出定义、处理流程描述以及数据间的关联性,确保项目团队对需求有共同的理解。
概念设计:
实体关系识别:通过绘制ER图来直观展现系统内的实体及其相互间的关系。
属性定义:为每一个实体定义其属性,包括数据类型、字段长度、是否可为空等关键信息。
逻辑设计:
关系模式转换:将ER图转换成具体的关系数据库模型,设计表结构。
表间关系定义:明确不同表之间的联系,通过外键实现参照完整性约束。
索引设计:根据查询需求合理设计索引,提升数据检索效率。
物理设计:根据具体的数据库管理系统,设计表的物理存储结构。
MySQL
0
2024-11-01
RF Circuit Design Theory and Application with MATLAB Tools
本书涉及滤波器、匹配网络、高频半导体器件、放大器、混频器和振荡器的原理分析和设计方法。利用MATLAB数学工具软件,开发了多种与本书内容相关的模拟或解题软件,供读者使用。
Matlab
0
2024-11-04
Research and Application of MOOC Platform Learning Analytics Algorithm Based on Big Data
Big data technology has become a hot research topic in the field of education, focusing on analyzing large amounts of educational data collected to improve teaching methods and enhance education quality. Among educational big data, learning analytics is particularly important, as it helps teachers understand students' learning progress and implement personalized teaching, thus promoting teaching reform. In higher education, the application of big data-based learning analytics technology can monitor students' learning processes. By analyzing students' behavioral patterns during the learning process, teachers can gain a more intuitive understanding of each student's performance. This technology provides a series of insights such as 'who is learning', 'what is being learned', and 'how well students are learning', which is crucial for ensuring educational quality.
Data collection is the first step in big data learning analytics, which involves utilizing various technical means to gather data from different sources. In the context of online education, the primary source of data is students' online behavior during the learning process. This data includes but is not limited to, video viewing patterns, discussion board participation scores, assignment scores, exam results, and forum interaction scores. These data need to be collected using appropriate tools such as web crawlers written in Python or by calling data through API interfaces.
Once the data is collected, the next step is data preprocessing. This stage involves cleaning the data, removing unreliable data points like test accounts and extreme outliers. The goal of preprocessing is to ensure the accuracy of subsequent analysis, structure the data for easy storage, and prepare it for analysis. Data analysis is the core part of learning analytics and primarily includes statistical analysis and visualization, clustering analysis, predictive analytics, association rule mining, and text mining. These methods help teachers gain deeper insights into students' behavioral patterns, learning habits, and performance trends. Statistical analysis and visualization transform data into charts and graphs for intuitive representation of students' learning progress. Clustering analysis groups students by learning habits or grades, while predictive analytics forecasts students' future performance based on historical data. Association rule mining focuses on identifying relationships between students' behaviors, and text mining analyzes content from discussion boards to understand students' learning attitudes and thought processes.
The application and development of big data in education holds great potential. With the rapid growth of global data, educational big data is gradually becoming a field of focus both domestically and internationally, offering significant value in education. In practical projects, the application of learning analytics has already shown results. For example, a research project mentioned in the article uses the 'C Programming 1' course on a MOOC platform to analyze students' learning behavior data combined with performance data to help teachers better understand students' progress and offer reasonable teaching suggestions. The application of big data in education, particularly in learning analytics on MOOC platforms, is becoming a key driver of educational reform.
Hadoop
0
2024-11-06
Gas Meter Application Note External Circuit Design in TDC-GP30
在VC中新建一个dos控制台空白工程,并将sqlite3.c和sqlite3.h文件添加到工程中。接着,创建一个main.cpp文件,并在其中添加以下代码: extern \"C\" { #include \"./sqlite3.h\" }; int main( int , char** ) { return 0; } 这段代码用于初始化一个基本的编译环境,以支持在TDC-GP30上的外部电路应用。
SQLite
1
2024-08-03
A Comprehensive Analysis of Independent Component Analysis
Independent Component Analysis (ICA) stands as a pivotal advancement across diverse fields such as neural networks, advanced statistics, and signal processing. This resource furnishes a thorough introduction to ICA, encompassing the foundational mathematical principles, critical solutions, algorithms, and comprehensive exploration of novel applications in domains like image processing, telecommunications, and audio signal processing. The text meticulously dissects ICA into four core segments:* Fundamental Mathematical Concepts: This section lays the groundwork for understanding the mathematical underpinnings of ICA.* The Basic ICA Model and Solution: A detailed examination of the core ICA model and its associated solution strategies.* Extensions of the Basic ICA Model: Exploration of various extensions to the fundamental ICA model, enhancing its adaptability and applicability.* Real-World Applications of ICA Models: Delving into practical implementations of ICA models across diverse disciplines. The authors, renowned for their contributions to ICA development, provide a comprehensive treatise on relevant theories, cutting-edge algorithms, and real-world implementations, making this an indispensable resource for students and practitioners alike.
Access
3
2024-05-29
Understanding_the_Bluetooth_FeaturePack_Component
Bluetooth_FeaturePack 是针对计算机操作系统的一款重要组件,主要用于增强系统的蓝牙功能。该组件包含了蓝牙驱动程序、软件应用以及相关的服务,确保设备能够与各类蓝牙设备稳定兼容。安装该特征包后,用户可以更方便地连接蓝牙耳机、键盘、鼠标、打印机、手机等外围设备。
在这个特征包中,\"motion\"标签可能指的是运动传感器支持。在现代设备中,如笔记本电脑和平板电脑,常见的运动传感器(如加速度计和陀螺仪)可以检测设备的移动和方向,用于自动屏幕旋转、游戏控制、健康及健身等应用。Bluetooth_FeaturePack 可能包含这些传感器通过蓝牙与其他设备(如智能手机或手表)交换数据的组件。
此外,在蓝牙特征包的文件列表中,\"setup.exe\" 是 Windows 系统的安装程序文件。运行此文件可引导用户安装蓝牙驱动并添加相关软件。Bluetooth_FeaturePack 的安装流程通常包括以下步骤:
验证系统兼容性:检查计算机是否满足最低要求。
安装驱动程序:确保系统能识别和通信。
添加功能和服务:包括蓝牙文件传输、设备管理器等。
设置和配置:用户可配置蓝牙的基本设置。
更新现有设备:更新已连接的蓝牙设备以保持兼容。
完成和重启:安装后提示重启以生效。
通过安装 Bluetooth_FeaturePack,用户可以更好地优化设备的蓝牙功能,实现与各种设备的便捷交互。
Memcached
0
2024-10-26
Hadoop-Based Product Recommendation System Analysis
《基于Hadoop的商品推荐系统详解》在大数据时代,如何有效地利用海量用户行为数据,为用户提供个性化推荐,已经成为电商行业的重要课题。将深入探讨一个基于Hadoop的商品推荐算法,该算法利用MapReduce进行分布式计算,实现高效的数据处理,为用户推荐最符合其兴趣的商品。
Hadoop核心组件
我们要理解Hadoop的核心组件MapReduce。MapReduce是一种编程模型,用于大规模数据集的并行计算。在商品推荐系统中,Map阶段主要负责数据的拆分和映射,将原始的用户购买记录转化为键值对;Reduce阶段则负责聚合这些键值对,对数据进行整合和计算。在这个过程中,YARN(Yet Another Resource Negotiator)作为Hadoop的资源管理器,负责任务调度和集群资源分配,确保整个计算过程在分布式环境下高效运行。
推荐算法流程
信息采集:收集用户的购买历史、浏览行为、评价等多维度数据。这些信息存储在HDFS(Hadoop Distributed File System)中,提供高可靠性和可扩展性的数据存储。
构建用户购买向量:在Map阶段,通过解析用户购买记录,形成用户-商品的购买矩阵,每个用户对应一列,每个商品对应一行,矩阵中的元素表示用户购买商品的次数或权重。
生成商品推荐矩阵:基于用户的购买行为,计算每件商品与其他商品的相关性,形成商品推荐矩阵。常用策略包括协同过滤、基于内容的推荐或混合推荐策略。
矩阵运算:将用户购买向量与商品推荐矩阵相乘,得到每个用户的推荐结果。此过程可能需进行矩阵稀疏化处理,减少计算复杂度和存储需求。
去重处理:通过去重算法确保推荐的唯一性,例如使用哈希表或排序去重。
数据提交到数据库:将推荐结果导入数据库,如HBase或MySQL,便于实时查询和展示。
性能优化
在实际应用中,还需注意关键问题,例如数据倾斜、性能优化以及推荐结果的多样性和新颖性平衡。通过分区策略可以解决数据倾斜问题,通过优化Shuffle阶段提升计算效率,并引入时间衰减机制增加推荐的新颖性。
总结
基于Hadoop的商品推荐系统通过MapReduce进行分布式计算,有效提升了推荐系统在大数据环境下的处理能力。
Hadoop
0
2024-10-30
Build Hadoop on Windows 10Platform
Win10平台编译的Hadoop,解压后直接可用,可在本地模拟Hadoop集群环境。
Hadoop
0
2024-11-03
Implementing Product Quantization ADC Algorithm in Windows using MATLAB
这是product quantization算法中基于ADC距离计算在Windows下的MATLAB实现源码。
Matlab
0
2024-11-03