利用PSO优化自抗扰的SVM进行期货预测. 探讨了通过粒子群优化(PSO)技术提升自抗扰控制的支持向量机(SVM)模型在期货市场中的预测性能。
PSO-Enhanced ADR SVM for Futures Prediction
相关推荐
pso_lssvm Regression Prediction MATLAB Code
pso_lssvm回归预测MATLAB代码
Matlab
0
2024-11-04
基于PSO-SVM的Matlab程序
这是一个实现了PSO-SVM算法的Matlab程序,每个模块都有详细的注释,易于理解和高效利用。程序中可能缺少数据,用户可以通过访问数据库自行下载所需数据。
Matlab
2
2024-07-22
MATLAB支持向量机PSO-SVM粒子算法优化代码
这篇文章介绍了如何使用粒子群算法优化MATLAB中的支持向量机程序,以提高对股票价格和经济走势的预测精度。
Matlab
4
2024-07-28
SVM Prediction MATLAB Code for Fruit Detection in 3D LiDAR Point Clouds Using Velodyne VLP-16
This project demonstrates a MATLAB implementation for fruit detection in 3D LiDAR point clouds using the Velodyne VLP-16 LiDAR sensor (Velodyne LIDAR Inc., San Jose, CA, USA). The dataset contains 3D point clouds of 11 Fuji apple trees and corresponding fruit position annotations. The implementation uses a Support Vector Machine (SVM) classifier for fruit detection.
Setup and Requirements
Clone the Code: To begin, clone the repository using the command:git clone https://github.com/GRAP-UdL-AT/fruit_detection_in_LiDAR_pointClouds.git
Data Preparation: Create a folder named “data” in the directory where the code is saved. Inside this folder, store the ground truth data and point cloud data in subdirectories named “AllTrees_Groundtruth” and “AllTrees_pcloud”, respectively.
Prerequisites: Ensure you have the following installed in MATLAB:
MATLAB R2018 (other versions not tested)
Computer Vision System Toolbox
Statistics and Machine Learning Toolbox
Dataset: The LFuji-air dataset is stored in the /data folder. This dataset provides the necessary LiDAR data for training and evaluation.
Cross-validation: Perform cross-validation to evaluate the performance of the model in detecting fruit within the LiDAR point clouds.
Notes
The implementation is optimized for MATLAB R2018 and tested specifically on this version.
The project utilizes a dataset that includes both ground truth fruit positions and point cloud data for training the detection model.
Matlab
0
2024-11-06
Oracle必备文件及ADR的管理
在Oracle中,每个组件(如监听器、数据库实例、配置工具)在安装和运行时都生成日志(Log)和跟踪文件(Trace)。在Oracle 11g之前,这些文件散布在各个组件目录中。从11g开始,Oracle引入了ADR(自动诊断仓库)的概念,将所有这些信息统一管理。
Oracle
0
2024-08-05
DeepLearning_for_StockMarket_Prediction
深度学习在股市预测方面的应用是一个复杂而多元的研究课题,涉及到机器学习、金融工程以及数据科学等多个领域。韩国股价数据作为研究对象,选择深度学习方法进行分析和预测,主要是因为深度学习技术在处理非结构化数据方面具有显著优势。深度学习能够自动从大量原始数据中提取特征,而无需依赖预测因子的先验知识。这一点对于股市预测尤为重要,因为股市数据通常是非线性的、含有噪声的,并且有着复杂的动态特征。深度学习算法在选择网络结构、激活函数和其他模型参数方面存在较大的变化空间,其性能明显依赖于数据表示方法。
本研究尝试提供一个全面和客观的评估,以探讨深度学习算法在股票市场分析和预测方面的优缺点。实验使用了高频的日内股票回报率作为输入数据,检验了三种无监督特征提取方法——主成分分析(PCA)、自编码器(Autoencoder)和受限玻尔兹曼机(Restricted Boltzmann Machine)——对网络整体预测未来市场行为能力的影响。研究结果显示,深度神经网络能够从自回归模型的残差中提取额外的信息,并改善预测性能;但当自回归模型应用于网络的残差时,情况则不同。此外,当预测网络应用于基于协方差的市场结构分析时,协方差估计也显著改善。这表明深度学习网络在股票市场分析中具有潜在的优势。
关键词“Stockmarketprediction”(股票市场预测)和“Deeplearning”(深度学习)揭示了这一研究的核心内容。深度学习在股票市场预测中的应用,不仅仅局限于使用单一的深度学习模型,还包括了对多种模型的比较研究。例如,就提到将深度学习网络与AR(10)模型进行了对比。AR模型是时间序列预测中常用的自回归模型,通过先前时间点的观测值来预测未来值。中提到的AR(10)指的就是一个阶数为10的自回归模型。
在“Methodology”(方法论)方面,研究者们详细讨论了数据表示方法对深度学习算法性能的影响。不同的数据表示方法可能影响模型学习数据特征的方式,进而影响预测的准确度。这一点在深度学习模型的设计和训练过程中至关重要。此外,还提到了“Multilayerneuralnetwork”(多层神经网络)。多层神经网络是深度学习中的一种基础结构,它通过叠加多个非线性处理层,使得网络能够学习和表示更为复杂的数据特征。在股票市场预测中,多层神经网络的使用有利于捕捉股价变动的内在规律,这对于提高预测精度具有重要意义。
算法与数据结构
0
2024-11-07
Enhanced_Stanley_Algorithm_Versions
对算法进行了改进,共有三个版本,欢迎交流学习:1. 原生Stanley算法2. 针对速度范围及横偏角偏修改的算法3. 固定补偿的算法
Matlab
0
2024-11-02
PSO-SVM预测模型在综采面缓倾斜煤层区段煤柱宽度中的应用
为了精确预测缓倾斜煤层区段煤柱宽度,分析了影响综采工作面的主要因素,并选取了8个关键因子。建立了基于粒子群优化支持向量机(PSO-SVM)的预测模型,通过对PSO-SVM、网格搜索优化支持向量机(GS-SVM)和遗传算法优化支持向量机(GA-SVM)三种方法的对比分析,结果显示PSO-SVM方法的预测平均相对误差仅为1.81%,具有较高的预测精度和普适性。该模型能够有效预测缓倾斜煤层区段煤柱宽度,对综采工作面具有重要指导意义。
统计分析
1
2024-08-02
pso优化算法MATLAB实现-NBNC-PSO-ES详解
这是MATLAB中NBNC-PSO-ES算法的源代码,专为多模态优化问题设计。您可以轻松与其他算法进行比较和更新。项目完全用于研究目的,包括算法、函数代码和数据。主程序入口为'ex.m',同时提供了测试问题的补充工具和CEC2013最佳值的数据信息。算法支持并行运行,确保您的并行池可用。
Matlab
0
2024-08-10