期货市场
当前话题为您枚举了最新的期货市场。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
matlab期货代码-Tushare MATLAB接口详解
matlab期货代码Tushare MATLAB接口详细说明Lianrui Fu 2018.10.31。1.概述Matlab版本需为2016b及以上。接口使用说明可通过help pro_api和help pro_bar查看。调用示例见tushare_pro_test.m。2.接口说明当前Matlab版本主要提供query接口,用于获取股票列表、日线行情等数据,以及通用行情接口pro_bar。输出数据为Matlab table类型,与pandas的DataFrame类似。调用失败时返回[]并显示相应原因,常见原因包括无效token、网络异常、Matlab版本过低(需2016b及以上)、参数输入错误。2.1 query说明:调用方式为api.query(api,api_name,param_name1,param_name2,param_2,...),具体参数与Python接口一致。例如,stock_basic调用示例:token = 'c75b7d8389a...
Matlab
0
2024-08-27
应用市场软件
随着科技进步,应用市场软件正成为数字化生活中不可或缺的一部分。
Hadoop
2
2024-08-01
matlab期货代码-IQML MATLAB连接器到IQFeed
IQML是一个Matlab工具箱,用于将MATLAB连接到IQFeed,从而检索金融市场数据和新闻。以下是该工具箱的主要功能概述:
IQML使得用户能够利用MATLAB的强大分析和可视化功能,同时依赖IQFeed提供的可靠市场数据,涵盖股票、ETF、共同基金、债券、期权、期货、商品和外汇的实时和历史数据。无论是自动化算法交易,还是选择性手动交易,IQML都能提供连续的市场数据馈送。
该工具箱为IQFeed提供了一个稳定、易用的MATLAB接口,经过精心优化,具有优异的性能、可靠性、稳定性和兼容性。IQML带有详细的使用手册,并提供了具体的示例和实现技巧。下载的版本是功能齐全的,可以免费使用30天,过后可购买许可证。
IQML的主要功能包括:- 使用简单的MATLAB命令以阻塞(快照)或非阻塞(流)模式获取市场数据。- 实时的顶级市场数据(报价和交易)。- Live Level2市场深度数据。- 历史数据查询,包括当天和实时市场数据(单个报价或间隔条)。- 资产基本信息和基于基本面及交易标准的市场扫描仪。- 期权和期货链查询(包含市场数据和希腊字母)。- 符号和市场代号等。
IQML为与IQFeed的连接提供了可靠、高效的解决方案,适合需要快速获取和分析实时市场数据的用户。
Matlab
0
2024-11-06
深度学习赋能高频交易:股指期货实践与策略
深度学习在高频股价预测中的应用
本研究探索了深度学习在高频股价预测领域的应用,并构建了相应的交易策略。研究发现,基于深度学习的模型在1秒钟高频股价预测任务中,准确率超过了73%。
高频交易策略与收益
为解决高频预测结果难以直接获利的问题,我们进一步开发了日内交易策略。实证结果表明,该策略在万分之二的交易成本下,实现了77.6%的年化收益率,最大回撤控制在-5.86%以内。
收益与交易次数的关系
| 累积收益率 | 交易次数 ||---|---|| -0.2 | 22 || 0 | 7 || 0.2 | 45 || 0.4 | 3 || 0.6 | 67 || 0.8 | 9 || 1 | 90 || 1.2 | 5 || 1 | 11 || ... | ... |表格数据省略,仅供参考
算法与数据结构
6
2024-05-27
大数据深度学习系列——股指期货日内交易策略优化
当前,随着大数据时代的来临,机器学习特别是深度学习技术的快速进步,已经成为互联网领域研究和应用的热门方向。深度学习作为机器学习领域的重大进展,已经成功解决了多个复杂问题,在语音识别、图像识别等领域取得了重大突破。谷歌、微软、IBM、百度等IT巨头已投入大量资源,深度学习技术已广泛应用于金融工程中的量化投资。在量化投资领域,特别是股指期货的日内交易策略优化,机器学习和深度学习模型通过历史数据挖掘交易模式,成功预测股票价格变化趋势。早期美国富国银行的定量投资系统为代表,发展至今,超过60%的美国交易由计算机完成。量化投资领域的佼佼者包括詹姆斯·西蒙斯和大卫·肖,他们以数学模型和计算机技术在金融市场上取得卓越成就。在股指期货的日内交易策略中,通过深度学习模型的高频股价预测,研究者提出的策略自2013年以来累积收益率达到99.6%,年化收益率达77.6%,最大回撤仅为-5.86%。报告详细介绍了深度学习在量化投资中的应用,包括模型结构、人工神经网络、自编码器和深度网络等。深度学习模型仿人脑神经网络结构,使用多层神经元处理信息,有效识别数据复杂模式。自编码器通过编码解码学习数据有效表示。在金融工程中,深度学习解决大数据优化问题,迭代算法有效求解。日内交易策略需考虑市场微观结构,深度学习利用高频市场数据预测股价,指导交易决策。实证分析表明,该策略在样本外表现准确率超过73%,有效改进了交易信号的可靠性。模型展示了深度学习在股指期货日内交易策略中的有效性和创新,为量化投资领域带来重大贡献。
算法与数据结构
0
2024-08-25
Hadoop的市场策略
Hadoop作为大数据处理领域的主要技术,其市场策略日益受到关注和重视。随着数据规模的迅速增长,Hadoop在数据管理和分析方面展现出了强大的潜力。
Hadoop
2
2024-07-16
探索市场均衡管理经济学视野下的菜市场调控策略
【管理经济学视角下的菜市场调控】 菜市场调控在管理经济学中扮演着关键角色,其核心在于寻找并维持市场均衡。在近期我国菜价波动明显的背景下,“菜贱伤农”与“菜贵伤民”现象突显市场供需失调的问题。供需不平衡的根源包括生产错季、物流成本、信息不对称等因素,以及政府政策的多层次影响。
市场信息不对称和流通成本高是供需失调的关键原因。菜农因市场信息不透明而难以准确判断市场需求,从而导致局部供需不平衡,加剧了价格波动。市场均衡概念认为,价格应作为调节工具,以平衡供需,但菜市场并非完全竞争市场,政策、自然灾害等外部因素削弱了价格杠杆作用,影响了资源配置的效率。
在此情境下,政府调控的角色至关重要。政府可以通过建立信息发布平台,帮助菜农了解市场动态,避免盲目生产。同时,改善物流体系,降低运输成本,确保农产品顺畅进入市场。此外,合理的补贴政策可用于平抑菜价波动,保障农民和消费者的利益。具体策略包括:
市场信息发布:建立透明的信息平台,提高市场信息对称性,帮助菜农准确判断供需。
物流效率优化:提高物流效率,降低高昂的运输成本,提升农产品流通速度。
价格干预与补贴:适当调控菜价波动,避免过大价格波动导致供需失衡的风险。
此外,政府可建立农产品储备制度,提升应对突发事件的能力,进一步保障市场稳定。菜市场的健康发展需要政府、市场与农户的协同作用,通过精准调控和灵活干预措施,逐步实现“菜篮子”工程的惠民目标。
总结:菜市场调控的核心在于利用管理经济学工具,结合政府宏观调控与市场自主调节,保障供需平衡,进而实现农产品价格稳定和市场的良性发展。
Access
0
2024-10-28
阿拉伯银行市场细分
本研究采用财务比率对 92 家阿拉伯银行进行市场细分,使用因子和聚类分析将银行分为五个组。通过多判别分析,发现覆盖率、获利能力和效率对区分组别最有帮助。
统计分析
4
2024-05-01
零售市场管理系统
随着社会经济的发展,人们对市场的需求不断提高,零售市场的竞争也日益激烈。目前,零售业呈现多元化发展趋势,包括超市、仓储店、便利店、特许加盟店等多种业态并存。如何有效满足客户需求、降低成本以提升利润,已成为各零售企业的核心发展目标。
SQLServer
2
2024-07-13
大型企业利用市场操纵策略
大型企业正在利用市场操纵策略来影响市场行为和价格走势。这种做法引发了公众和监管机构的关注,因为它可能导致市场不公平和竞争扭曲。监管机构正在加强对这些行为的监督和调查,以确保市场的公平和透明。
DB2
2
2024-07-16