当前,随着大数据时代的来临,机器学习特别是深度学习技术的快速进步,已经成为互联网领域研究和应用的热门方向。深度学习作为机器学习领域的重大进展,已经成功解决了多个复杂问题,在语音识别、图像识别等领域取得了重大突破。谷歌、微软、IBM、百度等IT巨头已投入大量资源,深度学习技术已广泛应用于金融工程中的量化投资。在量化投资领域,特别是股指期货的日内交易策略优化,机器学习和深度学习模型通过历史数据挖掘交易模式,成功预测股票价格变化趋势。早期美国富国银行的定量投资系统为代表,发展至今,超过60%的美国交易由计算机完成。量化投资领域的佼佼者包括詹姆斯·西蒙斯和大卫·肖,他们以数学模型和计算机技术在金融市场上取得卓越成就。在股指期货的日内交易策略中,通过深度学习模型的高频股价预测,研究者提出的策略自2013年以来累积收益率达到99.6%,年化收益率达77.6%,最大回撤仅为-5.86%。报告详细介绍了深度学习在量化投资中的应用,包括模型结构、人工神经网络、自编码器和深度网络等。深度学习模型仿人脑神经网络结构,使用多层神经元处理信息,有效识别数据复杂模式。自编码器通过编码解码学习数据有效表示。在金融工程中,深度学习解决大数据优化问题,迭代算法有效求解。日内交易策略需考虑市场微观结构,深度学习利用高频市场数据预测股价,指导交易决策。实证分析表明,该策略在样本外表现准确率超过73%,有效改进了交易信号的可靠性。模型展示了深度学习在股指期货日内交易策略中的有效性和创新,为量化投资领域带来重大贡献。