pso_lssvm回归预测MATLAB代码
pso_lssvm Regression Prediction MATLAB Code
相关推荐
PSO-Enhanced ADR SVM for Futures Prediction
利用PSO优化自抗扰的SVM进行期货预测. 探讨了通过粒子群优化(PSO)技术提升自抗扰控制的支持向量机(SVM)模型在期货市场中的预测性能。
Matlab
0
2024-11-04
PSO Optimization Algorithm MATLAB Implementation with Paper and Code
PSO优化算法的MATLAB语言实现,包含英文论文和代码。
Matlab
0
2024-10-31
Matlab AUC Code-CSE 847Homework 4Logistic Regression and Sparse Logistic Regression Analysis
问题 1:逻辑回归
实验结果表明,随着进入 Logistic 回归分类器 的样本数量增加,测试准确性也逐步提高。这是合理的,因为数据集中的模式在样本量增多时变得更加代表性。随着更多样本的引入,模型的泛化能力也变得更强。下图展示了模型的测试准确性与训练时使用的样本数之间的关系,随着样本数量的增加,测试准确性呈明显的上升趋势。
问题 2:稀疏Logistic回归
根据实验结果,理想的正则化参数为 0.1。当正则化参数过大时, AUC 值会降低,正则化参数为 0 或 1 时,模型的性能较差。当正则化参数为 1 时,模型的测试准确度恰好为 50%。这是因为测试数据包含了74个阳性样本和74个阴性样本,因此,模型始终预测为0时,正好能够正确分类一半的样本。下图显示了精度与 L1 正则化参数 的关系。实验还揭示了一个有趣的模式,数据集中的相关特征数量约为 15-20 个。
Matlab
0
2024-11-06
Image Mean Squared Error MATLAB Code for Deep Sequence Regression with Diverse Labels
图像的均方误差的MATLAB代码,涉及标签多样性的深序回归,这是实施的官方代码库,接受ICPR2020。代码作者:Axel Berg。依赖关系包括深度学习工具箱的MATLAB 2020a和CUDA 10.1。数据集准备:在脚本中设置数据集的正确路径后,下载对齐并裁剪的UTKFace图像,运行age/data/createCroppedUtkDataset.m,以创建用于读取图像的数据存储对象。训练/测试拆分与“Coral-CNN”中使用的拆分相同。对于Biwi数据集,我们使用FSA-Net论文中所述的协议2(70-30的训练/测试拆分)。您可以使用原始代码准备数据集并将拆分存储为.mat文件。历史图像数据集需下载并添加,将date/dateParameters.m变量设置为指向它。培训与评估:对每个数据集,运行迭代脚本以训练ResNet50主干进行10次迭代,并将平均误差结果保存在文件中。所有方法的超参数相同,并在单个函数中定义。支持以下损失函数:L2。
Matlab
0
2024-10-31
MATLAB Code for Traffic Impact Prediction Real-Time Traffic Accident Impact Forecasting
The MATLAB code provided here enables the real-time traffic accident impact prediction for both short-term and long-term traffic conditions in Los Angeles. The dataset is sourced from the LADOT (Los Angeles Department of Transportation). The algorithm used is a slight modification of the Collaborative Contextual Bandit Strategy Algorithm, which is based on the idea that when various traffic sensors share information and predict data from other sensors when necessary, the prediction accuracy improves. Disclaimer: Traffic impact prediction uses JxBrowser, which is proprietary software. Use of JxBrowser is subject to the JxBrowser Product License Agreement. For usage in development, contact TeamDev for licensing inquiries.
Matlab
0
2024-11-06
MATLAB 开发:Fuzzy Regression Tree
使用回归树算法和 ANFIS 训练生成模糊推理系统 (FIS)。
Matlab
3
2024-05-28
matlab_ols_regression_homework
MATLAB作业,关于OLS的回归,是二元一次方程的回归。
Matlab
0
2024-11-03
ESP_DNN Graph Convolutional Deep Neural Network for Electrostatic Potential Surface Prediction in DFT(MATLAB Source Code)
ESP-DNN: Graph Convolutional Deep Neural Network for Predicting Electrostatic Potential Surfaces from DFT Calculations
This repository contains trained models and code designed for generating ligands and proteins, creating electrostatic potential (ESP) surfaces that closely resemble DFT-quality molecular surfaces. The PQR files generated by our model include atomic charges and dipole-like atomic features, such as lone pairs, σ-conjugation, and p-orbitals. To generate ligand PQR files, a graph convolutional deep neural network (DNN) model was trained on about 100,000 molecules with ESP surfaces derived from DFT calculations.
For proteins, parameterized charges of amino acids were used, ensuring compatibility with the ligand ESP surfaces generated by the DNN model. For more detailed methods and validation information, refer to the full documentation.
System Requirements
The program can only run on 64-bit Linux operating systems.
Installation Instructions
To run ESP-DNN, you will need to:1. Clone this repository.2. Set up Python and required dependencies.3. (Optional) Install additional packages.
The package has been developed and tested with Python 2.7 and the following third-party libraries:- rdkit == 2018.09.3- keras == 2.2.4- tensorflow == 1.10.0- num
Matlab
0
2024-11-06
Matlab_TLAB_SVM_Regression_Integration
Matlab开发 - 在TLAB中使用ekasSVM回归函数。演示如何将WEKA的ML库导入Matlab,并使用SVM回归。
Matlab
0
2024-11-04