脑血管系统是一个复杂的血管网络,为大脑提供重要的营养和氧气。这种系统易于遭受出血、感染、血栓等损伤,常常需要进行脑部手术。然而,手术时通常无法直接进入手术地点,因此必须寻找替代入口点和路径。提出的系统利用MRA图像上的图像处理和路径查找技术,帮助医生/外科医生找到脑血管系统中两点之间的最短距离。论文链接:ACM Paper
Optimizing Pathfinding in Cerebrovascular Networks A MATLAB Approach
相关推荐
Radar System Analysis and Design A MATLAB Approach
雷达系统分析与设计,这本书是雷达的基本入门书籍,内含MATLAB源代码,使用起来比较方便。虽然有中文翻译,但存在很多错误,建议查看英文版!
Matlab
0
2024-11-04
System Performance Simulation with MATLAB A Practical Approach
In this article, we will explore system performance simulation based on MATLAB, focusing on key methods and techniques for analyzing system efficiency. MATLAB offers a powerful platform for simulating various system behaviors, such as response time, throughput, and resource utilization. By leveraging its advanced simulation tools, engineers and researchers can model complex systems and assess their performance under different conditions. The article will delve into how MATLAB can be used to simulate both linear and nonlinear systems, demonstrating its utility in performance evaluation and optimization.
Matlab
0
2024-11-06
Understanding the Development of Computer Networks - Basics of Computer Networks
Development of Computer Networks (Understanding)
Remote Terminal Connection Stage: The early stage of computer networks, where terminals were connected to a central mainframe for data access.
Computer-to-Computer Network Stage: This stage marked the beginning of direct communication between computers, laying the foundation for modern networking.
Computer Network Interconnection Stage: The evolution of networking where multiple networks were interconnected, forming the internet.
Information Superhighway Stage: The current phase, characterized by high-speed data transfer and advanced networking technologies, forming the backbone of global communications.
Content Slides
Access
0
2024-10-27
Generating Adversarial Networks in MATLAB Counting Images
生成对抗神经网络MATLAB代码
生成对抗神经网络的MATLAB代码已被弃用。建议使用NeuralTalk2,它比旧版本快约100倍,支持在GPU上进行批处理和CNN微调。此项目包括使用Python和Numpy的源代码,通过多模态循环神经网络为图像生成描述。
项目概述
输入数据为使用Amazon Mechanical Turk收集的图像及其5个句子描述。训练阶段中,图像作为输入,RNN根据上下文预测句子中的单词,网络的参数在这一过程中不断更新。
Matlab
0
2024-11-04
Optimizing PID Parameters with BAS and SOA Methods in MATLAB
In this article, we explore the optimization of PID parameters using BAS (Beetle Antennae Search) and SOA (Swarm Optimization Algorithm) methods in MATLAB. By leveraging MATLAB's built-in BAS optimization and SOA optimization functions, users can enhance PID controller performance effectively.
Key Methods
BAS Optimization: The BAS algorithm simulates beetle behavior to locate optimal solutions efficiently, minimizing error in PID control.
SOA Optimization: The SOA algorithm, inspired by swarm intelligence, is another powerful method to refine PID parameters, enabling improved control accuracy.
Steps to Implement
Setup MATLAB: Open MATLAB and access the BAS and SOA programs, adjusting parameters as needed for optimal PID performance.
Run Simulink Models: Simulate the systems using provided Simulink diagrams for BAS and SOA to observe and compare optimization results.
The use of BAS and SOA provides flexible, efficient paths to tuning PID controllers, beneficial across various applications requiring precise control mechanisms.
Matlab
0
2024-11-05
MATLAB Code Generation for MOPSO in WSN Optimizing Cluster Counts
该MATLAB的无花果生成代码MOPSO-WSN包含在无线传感器网络中用于MOPSO的代码,以查找最佳的簇数。步骤如下:1. 在MATLAB中打开Init.m并运行代码;2. 然后在主目录中打开.fig文件以查看图;3. 为方便起见,我们还生成了.txt文件;4. 将它们复制到Excel工作表列中,以生成生成值的数据库。后续资源或论文资源已移至资源文件夹。归因用于提供项目的基本逻辑和实施。
Matlab
0
2024-10-31
Normalization Issues in Artificial Neural Networks-Introduction to Neural Networks Chapter 4
Normalization Issues
In neural network training, normalization is crucial to ensure consistent model performance and faster convergence. Below are key normalization methods:
Normalization Method One
E and E’
Distance metric (d) adjustments
Normalization is used to transform input data, enhancing the efficiency of the network by bringing diverse features into a common scale.
This approach helps in minimizing gradient issues, ensuring stable and accelerated training progress.
Matlab
0
2024-11-05
Implementing RBF Neural Networks for Nonlinear System Identification in MATLAB
在这个模拟中,我为非线性系统的零阶近似实现了RBF-NN。模拟包括蒙特卡罗模拟设置和RBF NN代码。对于系统估计,使用具有固定中心和扩展的高斯核。而RBF-NN的权重和偏差使用基于梯度下降的自适应学习算法进行优化。引文:Khan, S., Naseem, I., Togneri, R.等。电路系统信号处理(2017) 36: 1639. doi:10.1007/s00034-016-0375-7 https://link.springer.com/article/10.1007/s00034-016-0375-7
Matlab
0
2024-11-04
Backpropagation Tutorial Training Neural Networks Using MATLAB for Pattern Recognition
本教程简要介绍了基于梯度下降和delta规则的反向传播算法下多层神经网络的训练及其数值实现。在MATLAB环境中模拟网络,训练它解决字符识别问题和著名的XOR问题。获得的结果非常有趣,表现出优异的性能。由于该算法是函数的近似,它适用于许多需要系统识别和模式分类的问题。关键词:神经网络,多层感知器,训练,模式识别,反向传播,delta规则,梯度下降。
Matlab
0
2024-11-05