AdaBoost是一种将“强”分类器构建为简单弱分类器的线性组合的算法。通过此演示,您将能够理解如何利用AdaBoost进行二维点的分类。具体实现请参考以下资源: 参考资料
AdaBoost-M1二维点分类演示与Matlab实现
相关推荐
二维点集凸包计算:Matlab 实现
Matlab 提供 convhull 函数,用于计算二维点集的凸包。例:生成一组极坐标点,转换为笛卡儿坐标,使用 convhull 计算凸包,并用红色实线绘制凸包轮廓。
Matlab
3
2024-05-25
MATLAB-2断层构造与二维层析重建演示
MATLAB开发-2 断层构造演示。二维 层析重建的MATLAB演示。
Matlab
0
2024-11-04
快速计算二维点集的最小边界框——MATLAB实现详解
介绍了如何利用MATLAB实现一种快速计算一组2D点最小边界框的方法,类似于John D'Errico提出的最小边界矩形。该算法完全矢量化,避免了使用for循环,特别适用于大数据点集。与传统算法不同的是,它着重于计算最小面积矩形而非最小周长。
Matlab
0
2024-08-17
MATLAB Adaboost分类实现与准确率测试
MATLAB版的Adaboost对数据集进行分类,并测试其准确率,详细步骤可参考readme.txt文件。通过此实现,可以快速进行数据分类任务,并对模型效果进行评估,适用于机器学习模型训练与性能测试。
Matlab
0
2024-11-05
二维分数傅里叶变换的MATLAB实现
这份MATLAB源代码演示了二维分数傅里叶变换的过程,设计简单易懂,特别适合图像加密应用。
Matlab
0
2024-09-20
二维特征数据分类方法探讨
这篇文章基于Matlab,介绍了对二维特征数据的分类方法。作者通过实现对两类图片的分类,探讨了在实际应用中的简单应用。
Matlab
0
2024-08-25
Matlab实现多尺度二维小波变换
wavedec2 函数 可用于执行多尺度二维小波变换。
语法:
[C, S] = wavedec2(X, N, 'wname')
[C, S] = wavedec2(X, N, Lo_D, Hi_D)
参数:
X:输入图像
N:分解层数
'wname':小波名称
Lo_D:低通分解滤波器
Hi_D:高通分解滤波器
返回值:
C:小波系数矩阵
S:簿记矩阵,包含分解过程的信息
Matlab
2
2024-05-20
二维离散小波变换的MATLAB实现
利用MATLAB程序实现了二维离散小波变换,并对小波系数矩阵进行了重构,深入理解了其原理和实现过程。同时,通过采用不同的小波和边缘延拓方法,对小波系数矩阵的能量、均值、方差和信噪比等统计量进行了详细分析比较,从而更深入地探讨了小波变换的应用。
Matlab
2
2024-08-01
adaboost 利用弱分类器集成强二元分类器的Adaboost方法——matlab开发
本项目实现了Adaboost方法,利用一系列弱分类器集成强二元分类器。我们选用决策树桩作为弱分类器,展示了在合成数据集和包含数字图像的MNIST数据集上的分类效果。
Matlab
0
2024-08-09