具有避障功能的最短路径算法(基于Dijkstra算法);代理(机器人)被表示为单个点,但障碍物的尺寸被夸大以考虑代理的外部尺寸。计算最短路径以防止代理和障碍物之间发生碰撞。
Pathfinder V2Dijkstra-Based Shortest Path Algorithm with External Obstacle Avoidance
相关推荐
Dijkstra Algorithm for Shortest Path in MATLAB
使用Dijkstra算法,寻求由起始点s到其他各点的最短路径树及其最短距离。
Matlab
0
2024-11-04
[Matlab]Path Planning Path Finder Algorithm for Grid Map Robot Shortest Path Optimization[Source Code Included]-2885th Edition
CSDN佛怒唐莲上传的视频均有对应的完整代码,可直接运行,亲测可用,适合初学者使用。
代码压缩包内容:
主函数:main.m
调用函数:其他m文件
无需额外运行运行结果效果图
代码运行版本:Matlab 2019b;若运行出现错误,请根据提示修改。如不懂,欢迎私信博主。
运行操作步骤:
步骤一:将所有文件放置在Matlab的当前文件夹中。
步骤二:双击打开main.m文件。
步骤三:点击运行,待程序执行完毕后即可看到结果。
仿真咨询:如需其他服务,请私信博主或扫描视频中的QQ名片,提供以下服务:
完整代码提供
期刊或参考文献复现
Matlab程序定制
科研合作
Matlab
0
2024-11-06
RRT_Star_Algorithm 2D and 3D Path Planning Applications
《RRT_Star算法在三维与二维路径规划中的应用》RRT(Rapidly-exploring Random Trees)算法是一种用于复杂环境中寻找机器人路径的有效方法,属于概率道路规划的一种。其核心思想是通过随机生成树节点并逐步扩展树来探索配置空间,找到从起点到目标点的可行路径。在此基础上,RRT*(RRT Star)进一步优化,确保路径逐渐收敛到最优解。
本压缩包“RRT_Star_Algorithm.zip”包含RRT算法在三维和二维环境下的实现,提供了在MATLAB平台上的源代码,用户可根据需求进行修改。MATLAB因其强大的可视化功能*,非常适合进行路径规划仿真。
2D环境中的RRT*算法
二维环境中的RRT算法处理平面上的路径规划问题,例如无人机在二维空间中的飞行路径。算法通过在起点周围随机生成节点,选择离树最近的节点进行扩展,直线连接新节点并迭代直至找到目标点。2D文件夹*下代码展示了如何构建和优化搜索树。
3D环境中的RRT*算法
三维路径规划则适用于机器人在立体空间中的移动路径,如仓库机器人。三维空间中,路径不仅考虑x、y方向,还需处理z轴高度变化。3D文件夹中的代码展示了如何扩展RRT*算法处理三维空间路径规划,包括如何生成随机点、选择最近邻节点及更新树结构以逼近最优解。
RRT算法的优势在于其能有效处理高维配置空间,并在动态环境中适应性强,随着迭代,路径逐渐优化趋近最优解。用户可以通过阅读license.txt*文件了解使用许可协议,并对代码进行调整以适应不同的路径规划需求。
算法与数据结构
0
2024-10-26
Image Watermarking Algorithm Based on LSB Implementation
基于LSB的图像水印算法是通过MATLAB实现的,包含有实现的源代码和论文。该算法通过最低有效位(LSB)技术,嵌入水印信息于图像中,确保视觉质量不受影响,同时实现信息的隐藏与传输。
Matlab
0
2024-11-03
Genetic Simulated Annealing Algorithm Based on Simulated Annealing Algorithm in GOAT Toolbox
本项目使用GOAT遗传工具箱完成基于模拟退火算法优化的遗传算法。通过将模拟退火算法引入遗传算法的优化过程,提升了算法在复杂问题求解中的效率。所有代码和函数都在GOAT工具箱中完成,并进行了详细注释,方便用户理解和修改。使用时,需要调用GOAT工具箱中的相关函数,确保在Matlab环境下正确运行。
Matlab编译环境使用说明:
下载并安装GOAT工具箱。
调用相关函数时,确保工具箱路径已配置。
运行代码前,检查代码中的所有依赖项。
根据需要调整优化算法的参数以适应不同的求解任务。
Matlab
0
2024-11-05
Matlab Implementation of Gradient-Based ICA Algorithm
一种基于梯度的ICA算法
本算法利用梯度优化方法来实现独立成分分析(ICA)。ICA是一种常用于信号分离的技术,而梯度优化可以有效地提升算法的收敛速度和性能。以下是该算法的主要步骤:
初始化:设定初始的权重矩阵和学习率。
梯度计算:通过计算梯度,更新权重矩阵以最大化独立性。
收敛判定:当权重矩阵变化小于预定阈值时,判定收敛,输出分离信号。
优化更新:利用梯度下降法持续优化结果,确保分离效果的最优化。
该算法能够有效处理盲源分离问题,且具有较强的实际应用价值。
Matlab
0
2024-11-05
K-Center Algorithm Based Data Mining Software
K中心点数据挖掘软件 K中心点算法(K-Prototype)是一种常见的聚类算法,主要用于处理包含数值型和类别型数据的数据集。在数据挖掘领域,它被广泛应用于客户细分、市场分析、图像分割等多种场景。这个基于K中心点的软件项目,使用了Visual Studio 2008作为开发环境,这是一款由微软推出的强大IDE,支持C++、C#、VB.NET等多种编程语言,便于开发者进行高效的软件开发。 K中心点算法是对经典的K均值算法的扩展,K均值只能处理数值型数据,而K中心点则能够同时处理数值型和类别型数据。在K中心点算法中,每个数据点都有一个“距离”度量,这个度量考虑了数值型属性和类别型属性的不同特性。对于类别型属性,通常采用模式距离或模糊距离来计算,而对于数值型属性,则使用欧氏距离等连续距离函数。在本软件项目中,开发者可能采用了自定义的距离度量函数来适应混合类型的数据。代码中的详细注释有助于理解算法的实现过程和各个部分的功能,这对于学习和改进算法提供了便利。同时,提供的数据库可能包含了用于测试和演示算法的实例数据,这些数据可能是结构化的表格形式,包含多个特征列和对应的分类标签。在实际应用中,K中心点算法首先需要确定合适的K值,即聚类的数量。这个值的选择通常依赖于业务需求或者通过肘部法则等方法来确定。接下来,算法会迭代地更新聚类中心,直到满足停止条件,如中心点不再移动或达到预设的最大迭代次数。在这个过程中,每个数据点会被分配到最近的聚类中心所在的类别。软件的实现可能包括以下关键步骤:1. 初始化:随机选择K个数据点作为初始聚类中心。2. 计算距离:计算所有数据点与聚类中心的距离。3. 分配数据点:将每个数据点分配到最近的聚类中心所属的类别。4. 更新中心点:重新计算每个类别中所有数据点的中心点,作为新的聚类中心。5. 检查停止条件:如果中心点没有显著变化或达到最大迭代次数,结束算法;否则,返回步骤2。通过这个基于K中心点的数据挖掘软件,用户可以对复杂的数据集进行快速聚类,从而发现数据的内在结构和模式。这对于数据分析师和研究人员来说,是理解数据、提取有价值信息的重要工具。同时,由于代码有注释,这也为学习和研究算法提供了一个良好的实践案例。
数据挖掘
0
2024-11-05
ISA A MATLAB-Based Internal Search Algorithm for Global Optimization
这是发布在以下位置的内部搜索算法(ISA)的m文件:- 甘多米啊,内部搜索算法(ISA):一种全局优化的新方法。ISA交易,53(4):1168至1183年,2014年 访问链接- Gandomi AH,Roke DA,使用内部搜索算法进行工程优化。2014年IEEE计算智能研讨会,佛罗里达州奥兰多,12月9-12日,第1-7页,2014年 访问链接该算法非常简单且有效,可应用于工程优化及其他领域。
Matlab
0
2024-11-05
Research and Application of MOOC Platform Learning Analytics Algorithm Based on Big Data
Big data technology has become a hot research topic in the field of education, focusing on analyzing large amounts of educational data collected to improve teaching methods and enhance education quality. Among educational big data, learning analytics is particularly important, as it helps teachers understand students' learning progress and implement personalized teaching, thus promoting teaching reform. In higher education, the application of big data-based learning analytics technology can monitor students' learning processes. By analyzing students' behavioral patterns during the learning process, teachers can gain a more intuitive understanding of each student's performance. This technology provides a series of insights such as 'who is learning', 'what is being learned', and 'how well students are learning', which is crucial for ensuring educational quality.
Data collection is the first step in big data learning analytics, which involves utilizing various technical means to gather data from different sources. In the context of online education, the primary source of data is students' online behavior during the learning process. This data includes but is not limited to, video viewing patterns, discussion board participation scores, assignment scores, exam results, and forum interaction scores. These data need to be collected using appropriate tools such as web crawlers written in Python or by calling data through API interfaces.
Once the data is collected, the next step is data preprocessing. This stage involves cleaning the data, removing unreliable data points like test accounts and extreme outliers. The goal of preprocessing is to ensure the accuracy of subsequent analysis, structure the data for easy storage, and prepare it for analysis. Data analysis is the core part of learning analytics and primarily includes statistical analysis and visualization, clustering analysis, predictive analytics, association rule mining, and text mining. These methods help teachers gain deeper insights into students' behavioral patterns, learning habits, and performance trends. Statistical analysis and visualization transform data into charts and graphs for intuitive representation of students' learning progress. Clustering analysis groups students by learning habits or grades, while predictive analytics forecasts students' future performance based on historical data. Association rule mining focuses on identifying relationships between students' behaviors, and text mining analyzes content from discussion boards to understand students' learning attitudes and thought processes.
The application and development of big data in education holds great potential. With the rapid growth of global data, educational big data is gradually becoming a field of focus both domestically and internationally, offering significant value in education. In practical projects, the application of learning analytics has already shown results. For example, a research project mentioned in the article uses the 'C Programming 1' course on a MOOC platform to analyze students' learning behavior data combined with performance data to help teachers better understand students' progress and offer reasonable teaching suggestions. The application of big data in education, particularly in learning analytics on MOOC platforms, is becoming a key driver of educational reform.
Hadoop
0
2024-11-06