本课程详细介绍了基于Flink流处理的实时亿级全端用户画像系统,应用于大型电商系统场景。系统采用第四代计算引擎Flink和微服务架构Spring Boot+Spring Cloud,前端使用Vue.js+Node.js,符合企业级标准。
基于Flink的实时亿级全端用户画像系统
相关推荐
Flink实时亿级电商全端用户画像系统
基于Flink流处理的电商全端用户画像系统
分享实时亿级电商用户画像系统实践经验
flink
4
2024-04-29
基于 Flink 的亿级用户数据实时分析系统设计与实现
介绍了一个基于 Flink 流处理框架构建的亿级用户数据实时分析系统。该系统采用 Flink + Node.js + Vue.js 的架构,实现了全端用户数据的动态实时统计分析,并符合企业级应用标准。
flink
3
2024-06-21
用户画像系统中的用户画像
用户画像概述
用户画像,通过不同数据维度刻画用户,利用数据分析为用户打上语义标签,将用户的行为和偏好抽象成多元化的人物标签,构建用户实体。
用户画像可以使用语义化表示,例如:
基础属性: 性别(男、女)、职业(学生、老师、白领)
价值属性: 高价值、中价值、低价值客户
用户画像也可以使用数学建模,将标签视为特征空间的维度变量,用户画像则表示为特征空间中的稀疏向量。
用户画像的应用
用户画像在互联网行业应用广泛,因为它可以定性和定量地描述用户:
定性: 抽象概括用户的生活场景和使用场景
定量: 统计分析用户的行为数据,挖掘核心用户价值
用户画像的动态性
用户画像的结果受数据动态变化影响,用户的静态信息属性(基础信息)相对稳定,但用户的行为数据会随时间变化。
spark
3
2024-05-12
利用Flink和Alink构建高效实时用户画像系统全程视频教程
分享一套全新课程,教你如何利用Flink和Alink构建高效实时用户画像系统。本课程采用最新的大数据技术栈,让你深入理解技术进步带来的变革,节省学习成本,提升企业开发效率。
flink
0
2024-08-08
基于用户画像的大数据应用实践
个性化推荐
广告信用等级分群
用户流失预警
潜在游戏用户群体筛选
异常监控分析
算法与数据结构
6
2024-05-13
用户画像宝典
掌握71个用户画像相关完整资料,轻松构建精细化用户画像。
Hadoop
4
2024-05-01
基于 Flink + ClickHouse + Drools 的动态规则实时智能营销系统
本项目分享一套基于 Flink 1.12.0 版本的动态规则实时智能营销系统视频教程,并提供配套课件与源码。系统整合了 Flink、ClickHouse 和 Drools 等技术,实现了高效的实时数据处理和规则引擎驱动的精准营销。
flink
4
2024-06-06
用户画像与用户角色辨析
用户画像,即 User Profile,是基于用户在互联网上的行为数据,经过收集和分析,为用户打上的一系列标签的集合。这些标签可以是用户的性别、地域、收入、情感状态、兴趣爱好以及消费倾向等。用户画像的构建有助于理解用户特征和行为模式。
需要注意的是,用户画像并非简单的标签堆砌,它更强调对用户群体特征的概括和提炼。用户画像的构建需要结合数据分析和专业领域知识,才能更加准确地描述用户群体。
与用户画像容易混淆的概念是用户角色 (User Persona)。用户角色是产品设计和用户调研中常用的方法,它通过构建虚拟的典型用户来代表目标用户群体。用户角色的描述通常包含用户的年龄、职业、教育背景、兴趣爱好、生活方式等信息,以及他们在特定场景下的目标、行为和痛点。
用户角色的构建依赖于用户研究和数据分析,它能够帮助产品团队更好地理解用户需求,并设计出更符合用户期望的产品。
spark
2
2024-06-17
用户画像标签架构
用户画像的标签体系根据业务属性分为多个类别模块,包括人口统计、社会属性、消费画像、行为画像、兴趣画像等。对于特定领域,还会有更细化的标签,如金融领域的风险画像、电商领域的商品偏好等。
spark
3
2024-04-30