介绍了一个基于 Flink 流处理框架构建的亿级用户数据实时分析系统。该系统采用 Flink + Node.js + Vue.js 的架构,实现了全端用户数据的动态实时统计分析,并符合企业级应用标准。
基于 Flink 的亿级用户数据实时分析系统设计与实现
相关推荐
基于Flink的实时亿级全端用户画像系统
本课程详细介绍了基于Flink流处理的实时亿级全端用户画像系统,应用于大型电商系统场景。系统采用第四代计算引擎Flink和微服务架构Spring Boot+Spring Cloud,前端使用Vue.js+Node.js,符合企业级标准。
flink
0
2024-10-20
亿级大数据实时分析的全新探索v520.pdf
在大数据领域,实时分析是快速决策和响应的关键技术。小米作为科技前沿公司,在处理大数据过程中积累了宝贵经验。在《亿级大数据实时分析的全新探索v520.pdf》中,欧阳辰详细分享了小米的实施历程,包括不同阶段的实施和关键组件的选型。大数据的核心特征包括“大量、快速、多样、变化”,实时数据在此背景下显得尤为重要。文档强调了小米的技术框架,融合了可视化算法、数据挖掘、统计分析、数据管理、数据存储和数据采集等多种技术。小米在广告营销、搜索与推荐等多个业务领域中成功应用大数据技术。数据分析过程包括数据处理、数据收集、数据可视化、数据分析和数据建模。文档还介绍了多种大数据分析工具,涵盖开源方案和商业方案。
算法与数据结构
0
2024-10-20
Flink实时亿级电商全端用户画像系统
基于Flink流处理的电商全端用户画像系统
分享实时亿级电商用户画像系统实践经验
flink
4
2024-04-29
Oracle数据库学习:基于SCOTT用户数据实战
这份笔记以SCOTT用户下的emp、dept和salgrade三个表为核心,带你快速上手Oracle数据库操作。
Oracle
8
2024-05-23
使用Flink SQL实现电商用户行为实时分析
将利用Kafka、MySQL、Elasticsearch和Kibana,使用Flink SQL构建一个实时分析电商用户行为的应用。所有的实战演练将在Flink SQL CLI中进行,完全基于SQL文本,无需编写Java或Scala代码,也无需安装IDE。实验的最终成果将展示在中。
flink
0
2024-08-30
用户数据接入类
三层架构是软件设计中常见的模式之一,用于有效管理用户数据的接入和处理。它包括数据访问层、业务逻辑层和表示层,每一层都有其特定的责任和功能。数据访问层负责与数据库交互,确保数据的有效存储和检索;业务逻辑层处理业务规则和逻辑,确保数据处理的正确性和完整性;表示层负责用户界面和用户交互,确保用户能够方便地访问和操作数据。三层架构通过清晰的分层设计,提高了系统的可维护性和扩展性。
SQLServer
0
2024-08-17
基于Hive的项目实战用户数据集优化
基于Hive的项目实战用户数据集格式为:上传者字符串, 视频数整型, 好友数整型。
Hive
0
2024-10-15
PHP在大数据实时分析中的应用
由于提供的文件内容为乱码,无法直接解读具体的知识点。但是,基于标题和描述提供的信息,我们可以讨论PHP用于大数据实时分析的相关知识点。PHP作为一种广泛使用的服务器端脚本语言,在传统的网站开发和小型到中型的数据处理中有着丰富的经验。随着计算机硬件性能的提升和PHP语言的优化,PHP在处理大数据量和实时分析方面也有了不少进展。实时分析要求在数据产生的同时即刻对其进行处理和分析,这对金融交易、在线营销等应用场景尤为重要。为了实现大数据量的实时分析,PHP通常与其他技术如命令行工具、数据流处理服务(如Apache Kafka或RabbitMQ)以及Socket编程等协同工作。面对性能问题和数据库优化挑战,优化代码、使用加速器或与高性能语言结合是扩展PHP功能的主要策略。为提高效率,PHP还可以与Redis、MongoDB等结合,利用内存数据结构和PaaS解决方案提升应用性能。
算法与数据结构
0
2024-10-15
基于Kettle+Clickhouse+Superset打造大数据实时分析平台
本课程结合Kettle、Clickhouse和Superset三大开源工具,构建一个高效的实时数据分析平台。课程以互联网电商实际业务为案例,详细介绍了数据处理的各个环节,包括流量分析、新增用户分析、活跃用户分析、订单分析和团购分析。这个平台不仅能够处理海量数据,还支持PC、移动和小程序端的数据分析需求。
flink
0
2024-08-09