Matlab开发-Minimumembeddingdimension。采用伪近邻方法来计算数据集中的最小嵌入维数。
使用Matlab开发最小嵌入维数的伪近邻算法
相关推荐
Matlab开发全面的Higuchi分形维数算法
Matlab开发:全面的Higuchi分形维数算法。提供了Higuchi分形维数的完整Matlab代码。
Matlab
0
2024-08-04
使用半方差技术评估ROI图像的分形维数MATLAB开发
该算法利用半方差技术计算ROI图像的分形维数,用于评估图像中纹理图案的方向性。水平和垂直方向的半方差分别定义为在所有像素N上的像素强度之和,分形维数通过半方差对数图的线性斜率计算得出。
Matlab
0
2024-08-27
内维数估计技术在Matlab开发中
基于Matlab的内维数估计技术实现。
Matlab
5
2024-04-30
洛伦兹吸引子相关维数的Matlab开发
讨论了洛伦兹吸引子的相关维数在Matlab开发中的应用。
Matlab
2
2024-07-19
使用Matlab进行三维体积法计算分形维数
这个Matlab函数利用傅立叶变换来计算三维分形体积的分形维数。
Matlab
0
2024-09-28
非线性维数约简Isomap算法代码
2000年发表于《Science》杂志的Isomap算法Matlab代码,用于非线性数据降维,专注于维数约简。
Matlab
3
2024-07-25
深入解析 C_CMethod.m:延迟时间与嵌入维数
C_CMethod.m:延迟时间与嵌入维数的影响
C_CMethod.m 文件涉及到时间序列分析中的两个关键参数:延迟时间和嵌入维数。这两个参数的选择对分析结果的准确性至关重要。
延迟时间是指在构建时间序列的嵌入向量时,相邻数据点之间的时间间隔。合适的延迟时间可以捕捉到时间序列中的非线性动力学特征,而过大或过小的延迟时间则可能导致信息丢失或冗余。
嵌入维数是指嵌入向量的维度,它决定了时间序列在相空间中的表示复杂度。合适的嵌入维数可以充分展开时间序列的动力学特征,而过高或过低的维数则可能导致过拟合或欠拟合。
C_CMethod.m 文件可能包含了用于确定最佳延迟时间和嵌入维数的算法或函数,例如互信息法或虚假近邻法。通过分析时间序列数据,可以找到最佳参数组合,从而更准确地揭示时间序列的动力学特性。
Informix
7
2024-04-30
使用机器学习预测伪随机数生成器的逻辑回归Matlab实现
要运行一个学习者的单个实例,请使用exampleKNN.m脚本。要重新运行实验,请运行deployConfig.m。我们总共实施了五名学习者:随机抽样-按比例随机抽取训练集中标签的比例随机森林-传统的随机森林算法,以固定深度生长自举树-预测由树预测的标签的模式KNN(k最近邻)-从训练集中预测k最近邻标签的模式朴素贝叶斯-假设给定标签的每个特征在条件上均独立于所有其他特征-通过在训练集中计数来学习概率,并根据未归一化的贝叶斯规则预测具有最高概率的标签Logistic回归-传统的logistic回归分类器使用Barzilai Borwein方程对更新进行了梯度下降训练-预测每个输出最可能的标签我们还实现或硬编码了几个伪随机数生成器(PRNG)。除非另有说明,否则每一项我们都支持k = 2、3和5个标签的值。Mercenne Twister-我们在Matlab内置的Mercenne Twister算法的默认实现中包装了一个函数。线性同余生成器-我们已使用Borland C。
Matlab
0
2024-08-25
探究Matlab语言中的K近邻算法
K近邻算法, 简称KNN, 是一种常用的机器学习算法, 在Matlab语言中有着广泛的应用. KNN算法尤其适用于解决分类问题, 通过分析与目标数据点最接近的K个邻居的类别, 来预测目标数据点的类别.
算法与数据结构
3
2024-05-20