社交拟态优化算法(SMO)是一种新型优化方法,特别适用于工程应用。提供了MATLAB代码示例(版本0.1),通过Costfunc.m文件来最小化目标函数。用户只需输入适当的SMO参数和问题参数即可进行优化。研究者可参考以下期刊文章:Saeed Balochian、Hossein Baloochian在《Expert Systems with Applications》2019年的研究成果。
社交拟态优化算法(SMO)的MATLAB代码优化及工程应用
相关推荐
SVM优化策略综述基于SMO算法的多核SVM模型探索与应用
在matlab开发环境中,利用SMO求解器和不同的内核(包括线性、rbf、多项式、sigmoid)创建SVM模型。通过在svm_test.m文件中运行示例,训练集的特征矩阵x(mxn)包含m个样本和n个特征,带有对应的标签向量y(mx1)。SMO求解器使用常数C和容差参数tol来优化模型训练。选择内核类型('l'代表线性,'r'代表rbf,'p'代表多项式,'s'代表sigmoid),并根据不同内核类型调整额外参数(如gamma、偏移和功率)。训练结果通过alpha系数和阈值b来确定分类边界。SMO算法支持从训练好的SVM模型中预测测试集样本的标签。
Matlab
0
2024-08-27
Matlab中的黑洞优化算法详解及应用
黑洞优化算法(Black Hole Optimization Algorithm, 简称BHO)模拟宇宙中黑洞的行为,是一种全局优化算法,特别适用于解决复杂多模态优化问题。在Matlab环境中,BHO利用其强大的数值计算能力,有效搜索函数的最优解。详细探讨了黑洞优化算法的基本原理、实现步骤以及在Matlab中的具体应用。
算法与数据结构
2
2024-07-17
粒子群算法的应用及优化
粒子群算法(Particle Swarm Optimization, PSO)是一种全局优化算法,模拟鸟群或鱼群的集体行为,由James Kennedy和Russell Eberhart于1995年提出。该算法通过模拟粒子在多维空间中的飞行和搜索过程来寻找最优解。每个粒子代表一个潜在的解决方案,通过更新速度和位置来逐步接近全局最优解。PSO算法的关键概念包括粒子、位置和速度更新、个人最佳和全局最佳位置、惯性权重和加速常数等。尽管PSO算法在处理非线性和复杂优化问题时具有较好的全局搜索性能,但其也存在易陷入局部最优和收敛速度不稳定的缺点,需要合理设置参数以优化算法性能。
算法与数据结构
2
2024-07-30
深入探讨C++11代码优化及工程应用
系统参数功能提供了显示或查询系统参数信息,包括维护参数和参数明细功能,其中维护参数功能涵盖增加、修改、删除系统参数。查询时可在【参数代码】框和【参数名称】框输入相应信息,点击‘查询’显示对应的系统参数信息。未输入任何信息时,点击‘查询’将展示所有系统参数信息。在参数维护方面,点击‘维护参数’->‘增加’,将显示相应页面。
Hadoop
0
2024-08-11
MATLAB代码优化及STOMP自我连接算法的GPU实现
这是STOMP算法的GPU实现,它将时间序列作为输入并计算特定窗口大小的矩阵轮廓。为了获得附加功能和更好的性能,建议使用至少CUDA工具包版本9.0,并且需要支持CUDA的NVIDIA GPU。您可以在Linux下使用Makefile构建,但在Windows下尚未经过测试。对于不同的GPU架构,您可以调整ARCH的值以匹配相应的计算能力。确保CUDA_DIRECTORY正确设置为系统中安装CUDA的路径,通常在Linux下为/usr/local/cuda-(VERSION)/。默认情况下,内核参数仅针对Volta优化,如果目标是Pascal或更早的版本,请相应地调整STOMP.cu中的设置。
Matlab
1
2024-08-04
模糊聚类算法MATLAB代码优化与应用
优化与应用模糊聚类算法MATLAB代码,包括模糊c均值聚类、模糊子空间聚类和最大熵聚类。示例使用虹膜数据集进行演示,详细展示每种算法的运行和聚类结果。选择超参数“choose_algorithm=1”运行demo_fuzzy.m,每次迭代均准确率为0.89333。
Matlab
3
2024-07-28
寻的器优化算法的 MATLAB 代码
此 MATLAB 代码提供了寻的器优化算法的实现,可用于优化寻的器的性能。
Matlab
2
2024-06-01
PSO算法的Matlab实现及优化
PSO算法类似于鸟群寻找食物的过程,其中每个粒子代表一个可能的解。它们根据速度和位置不断调整,最终集中于最优解。这种算法模拟了群体智能的搜索过程,可用于解决复杂的数学问题。
Matlab
1
2024-08-05
优化遗传算法工具及应用
应用遗传算法工具箱解决多种聚类和分类问题,实现高效数据挖掘。
数据挖掘
2
2024-07-16