这是STOMP算法的GPU实现,它将时间序列作为输入并计算特定窗口大小的矩阵轮廓。为了获得附加功能和更好的性能,建议使用至少CUDA工具包版本9.0,并且需要支持CUDA的NVIDIA GPU。您可以在Linux下使用Makefile构建,但在Windows下尚未经过测试。对于不同的GPU架构,您可以调整ARCH的值以匹配相应的计算能力。确保CUDA_DIRECTORY正确设置为系统中安装CUDA的路径,通常在Linux下为/usr/local/cuda-(VERSION)/
。默认情况下,内核参数仅针对Volta优化,如果目标是Pascal或更早的版本,请相应地调整STOMP.cu中的设置。
MATLAB代码优化及STOMP自我连接算法的GPU实现
相关推荐
MATLAB实现STOMP算法
STOMP算法是一种分布式贪婪算法,用于稀疏信号恢复,特别适用于MATLAB环境。它通过迭代优化过程,有效提高信号恢复的精度和效率。
Matlab
0
2024-08-18
PSO算法的Matlab实现及优化
PSO算法类似于鸟群寻找食物的过程,其中每个粒子代表一个可能的解。它们根据速度和位置不断调整,最终集中于最优解。这种算法模拟了群体智能的搜索过程,可用于解决复杂的数学问题。
Matlab
1
2024-08-05
基于Matlab的多种优化算法详解与实现(书籍及代码)
Matlab为基础的多种优化算法进行了详尽解析,并提供了实际代码,非常适合自学。
Matlab
0
2024-08-26
GPU加速的新型基于频域的维纳滤波器算法设计及其Matlab代码实现
这篇文章介绍了一种新开发的基于频域的维纳滤波器算法,专为GPU设计,以增强图像的去斑效果,并考虑了图像的局部特征。该方法在Matlab R2018b环境下开发,要求使用CUDA v9.1和cudnn v7.1.3进行GPU加速。研究由那不勒斯大学“Parthenope”完成,仅限于非营利用途。引用时请参考文献 B. Kanoun、G. Ferraioli、V. Pascazio和G. Schirinzi(2019)。
Matlab
0
2024-08-24
KNN定位算法MATLAB代码实现及应用
本MATLAB代码实现了一种精简的KNN定位算法,适用于室内定位初学者的学习。该代码已整理定位相关函数,并提供了一个使用射线跟踪仿真生成的指纹数据库。运行代码后,可获得定位结果并显示平均误差。在代码中,指纹数据库中的坐标对应于指纹库的行数和列数。为了计算最近邻点的位置,采用了不同的公式,这是因为欧式距离已被重塑为一维。
Matlab
3
2024-05-31
MATLAB中的遗传算法实现及优化
以MATLAB环境为例,介绍了如何使用简单遗传算法解决复杂函数优化问题。涵盖了初始化种群、编码、遗传操作、变异策略及选择方法等关键步骤,经过验证,程序稳定且效果显著。
Matlab
1
2024-07-28
MATLAB中的GPU编程优化技巧
然而,这本书采取了另一种方法。本书面向开发或维护MATLAB应用程序的学生、科学家和工程师,希望通过GPU编程加速其代码,同时不失MATLAB提供的诸多优势。本书的读者可能对MATLAB编码有一定或较多的经验,但对并行架构不甚熟悉。
Matlab
2
2024-08-04
基于GPU加速的定向图像/视频插值算法MATLAB代码详解
介绍了一种高度并行化的两阶段定向图像/视频插值算法,实现实时分辨率上变频。首先,算法通过利用四个对角邻居插入缺失像素,生成梅花形图像。随后,在第二阶段,进一步插值处理梅花形图像中的丢失像素。
Matlab
0
2024-09-27
Matlab代码优化图像矩阵FSVM算法实现
提供了图像矩阵FSVM算法的Matlab实现,涵盖了FSVM线性和内核算法的具体应用。代码适用于多种数据集,例如“乳房癌”数据集。通过修改代码中的setname变量,可以轻松评估其他数据集。文章强调了数据预处理的重要性,特别是对于未经预处理的原始数据。此外,提供了不同变体的算法以优化总散点矩阵和类内散点矩阵的计算效率。
Matlab
2
2024-07-27