生成对抗网络(GAN)在超声CT图像重建中具有重要应用价值。这种模型能够有效学习和重建医学图像,为医疗影像处理领域带来了新的突破。GAN模型的引入,标志着超声CT图像重建技术迈向了一个新的阶段。
超声CT图像重建GAN模型的Matlab代码
相关推荐
MATLAB实现CT图像重建程序
MATLAB编写的CT图像重建程序提供了一种高效的图像处理方案。此程序不仅仅是MATLAB代码,还包含了详细的实验报告模板,帮助用户深入理解和应用。使用这一程序,研究人员和工程师能够快速重建CT扫描图像,以获得精确的医学图像数据。
Matlab
0
2024-08-12
CT图像重建软件包用于执行CT图像重建任务的功能集-Matlab开发
这个软件包包括多种执行CT图像重建任务的函数,如Radon变换、简单反投影、空间域中的卷积滤波反投影、2D傅立叶变换滤波反投影,以及中心切片定理滤波反投影。其中的myCtReconstruction函数提供即开即用的功能,并使用Matlab的Shepp Logan Phantom进行演示。用户也可以通过参数运行myCtReconstruction函数来执行自定义数据集上的图像重建。
Matlab
0
2024-09-22
MATLAB脑部CT和MRI图像合成模型代码
这是用于脑部CT和MRI图像基于模型合成的MATLAB代码。通过此代码,可以根据给定的MR(T1w、T2w、PDw)和CT扫描,合成缺失的模态。代码基于SPM12软件包(及其MB工具箱),无需先行处理,完全无监督训练。如果您认为此代码有用,请在参考部分引用出处。
Matlab
0
2024-09-01
CT扫描图像重建算法比较与优化
使用Matlab系统函数调用投影算法[R, xp] = radon(I, theta),实现直接反投影和滤波反投影两种不同插值方法的比较。脚本展示了不同投影数量对重建效果的影响,适合CT重建算法初学者学习调试。该项目源于CMU的课程作业,提供了包括源码和文档在内的完整内容。
Matlab
2
2024-07-19
Matlab代码实现图像旋转45度的TP-GAN
TP-GAN是基于ICCV17论文的Tensorflow实现,从任何姿势下的单个面部图像中恢复同一个人的正面面部图像。介绍了该算法及其在MultiPIE数据集上的应用。详细信息包括使用Matlab脚本进行输入数据裁剪和预训练模型的优化。如需访问原始MultiPIE数据集,请联系。代码最初使用Tensorflow 0.12编写,但也欢迎其他版本的实现。预计更多功能将在未来发布。
Matlab
0
2024-10-01
使用深度卷积神经网络进行太赫兹CT图像重建的方法
在太赫兹CT图像重建中,我们采用深度卷积神经网络(CNN)来改进Radon变换,提高图像质量。我们利用UNet架构解决成像逆问题,训练数据集包括500张随机大小和位置的椭圆图像。与传统的FBP不同,我们研究了使用GAN进行CT重建的可行性。我们的目标是通过端到端的神经网络实现太赫兹CT成像的直接重建。
Matlab
0
2024-08-19
MRI图像稀疏优化重建的DFT Matlab源代码
DFT的Matlab源代码实现了MRI图像的稀疏优化重建。该实现采用非凸惩罚函数,鼓励稀疏性。所选惩罚函数为最小最大凹惩罚(MCP),用户可以通过直接运行main.m来比较流行方法与此实现之间的效果。Randon变换代码和DFT的反投影由Mark Bangert编写,解算器文件位于解算器文件夹中,用户可根据需求选择相应解算器。GIST_MCP.m使用Barzilai-Borwein步长的近端梯度法,而GIST_MCP_Nesterov.m则使用Nesterov加速的近端梯度法。详细的Nesterov加速近端梯度算法说明可参见Bo Wen等人的研究,该研究展示了在非凸非光滑最小化问题中的线性收敛性,得到了香港研究资助局的支持(PolyU253008/15)。
Matlab
0
2024-11-04
CT图像处理代码从CT数据提取2D图像并合成X射线图像
使用Visual Studio 2012平台上的OpenCV3.0库,本程序能从3D CT数据中提取任意角度和位置的2D切片图像,并将这些图像合成类似X射线的2D图像。安装OpenCV库的详细步骤包括下载和设置环境变量,然后在Visual Studio中创建新项目并配置解决方案平台,选择x86或x64平台进行设置。项目属性需设置Opencv包含目录和库目录,以及添加Opencv库依赖项。
Matlab
2
2024-07-31
CT环去除滤波器实现MATLAB mex函数滤除重建图像中的环伪影
这是F. Brun等人提出的环去除滤波器的一个实现(包含演示图像)。该方法提供了一种在重建的断层扫描图像中去除环形伪影的有效改进方法,具体见其论文《CT环去除(Brun et al., 2009)》,IFMBE Proceedings, 25(4):926-929。
Matlab
0
2024-11-05