在数学优化中,Rosenbrock函数是一种非凸函数,用于测试Howard H. Rosenbrock在1960年提出的优化算法的性能问题[1]。它也被称为罗森布罗克的山谷或罗森布罗克的香蕉函数。全局最小值位于一个狭长的抛物线形平坦山谷内。找到这个山谷并非易事,但收敛到全局最小值则更为困难。该函数定义为f(x, y) = (1-x)^2 + 100(y - x^2)^2,在点(x, y)=(1, 1)处取得全局最小值f(x, y)=0。尽管第二项的系数可能不同,但这并不影响全局最小值的位置。