高斯混合模型的参数估计通常使用期望最大化(EM)算法,这在matlab环境下尤为常见。
EM算法在GMM参数估计中的应用
相关推荐
参数估计
正态分布参数估计命令:[muhat, sigmahat, muci, sigmaci] = normfit(X, alpha) (默认alpha为0.05)其中:- muhat:均值点估计- sigmahat:标准差点估计- muci:均值区间估计- sigmaci:标准差区间估计
统计分析
3
2024-05-19
MATLAB中的参数估计方法
参数估计可以通过矩法和最大似然法来进行点估计。使用MLE函数进行常见分布的参数估计,实现了参数的区间估计。MATLAB统计工具箱提供了多种参数估计函数,详细内容请参考相关文档。
Matlab
1
2024-08-04
参数估计-matlab数据统计分析(参数估计)
正态总体参数估计
命令:normfit(X, alpha)
显著性水平alpha缺省为0.05
返回值:
muhat:均值点估计值
sigmahat:标准差点估计值
muci:均值的区间估计
sigmaci:标准差的区间估计
Matlab
1
2024-05-25
其他分布参数估计
对于其他分布参数估计,可以采用两种方法:1. 当样本容量充分大时(n>50),根据中心极限定理,近似服从正态分布。2. 使用 MATLAB 工具箱中提供的特定分布函数进行估计:- [muhat, muci] = expfit(X,alpha):在显著性水平 alpha 下,计算指数分布数据 X 的均值的点估计和区间估计。- [lambdahat, lambdaci] = poissfit(X,alpha):在显著性水平 alpha 下,计算泊松分布数据 X 的参数的点估计和区间估计。- [phat, pci] = weibfit(X,alpha):在显著性水平 alpha 下,计算 Weibull 分布数据 X 的参数的点估计和区间估计。
统计分析
2
2024-04-30
GMM聚类算法的贪心EM学习算法
该算法采用贪心策略结合EM算法,通过优化数据与模型的匹配度,寻找数据对GMM模型的最佳匹配,从而实现基于模型的聚类。
数据挖掘
5
2024-05-01
参数估计方法深度解析
专为医学生、临床医生和公共卫生医师打造的卫生统计学第八版学习资料,深入讲解参数估计的各种方法,助力提升统计学分析能力。
Access
7
2024-04-30
CIR模型的应用及参数估计——Matlab开发
包含3个.m文件:第一个文件使用CIR模型模拟期限结构,第二和第三个文件进行模拟并估计模型的参数。结果展示了200次运行的均值和标准差,验证滤波器的性能。详细信息请参考http://www.bankofcanada.ca/en/res/wp/2001/wp01-15a.pdf和/或Ren-Raw Chen和Louis Scott的文章“期限结构的多因素Cox-Ingersoll-Ross模型:来自卡尔曼滤波器模型的估计和测试”(房地产金融与经济杂志27,第2期,2003年,143-172页)。欢迎提出建议或评论。
Matlab
3
2024-07-28
MATLAB开发混合时变参数系统的参数估计算法
使用范数正则化和期望最大化技术,介绍了在MATLAB环境下开发的SON-EM算法,用于混合时变参数系统的参数估计。
Matlab
0
2024-09-27
参数估计与SPSS-Clementine应用指南
在数据挖掘中,参数估计是一项关键技术。SPSS-Clementine作为应用工具,有效支持了这一过程。
数据挖掘
0
2024-09-13