GMM
当前话题为您枚举了最新的 GMM。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
GMM和AdaBoost应用
GMM模型用于语音识别,而AdaBoost用于集成学习,可提升弱学习器的预测精度。
算法与数据结构
5
2024-05-26
GMM聚类算法的贪心EM学习算法
该算法采用贪心策略结合EM算法,通过优化数据与模型的匹配度,寻找数据对GMM模型的最佳匹配,从而实现基于模型的聚类。
数据挖掘
5
2024-05-01
基于MFCC的GMM语音识别matlab源码优化
在语音识别领域,基于MFCC的GMM语音识别matlab源码正在被优化和应用。随着技术进步,这一技术正逐步成为语音处理的重要工具。
Matlab
1
2024-07-28
使用GMM进行说话人识别的Matlab程序
这是在Matlab环境下利用高斯混合模型(GMM)进行说话人识别的源程序。训练模型已固定,可稳定运行并生成结果。分享给大家,希望能够帮助到需要的人。
Matlab
0
2024-08-27
EM算法在GMM参数估计中的应用
高斯混合模型的参数估计通常使用期望最大化(EM)算法,这在matlab环境下尤为常见。
Matlab
0
2024-09-25
快速GMM和Fisher向量具有Kmeans初始化和Fisher向量的高效GMM模型(仅对角协方差)-matlab开发
利用Kmeans初始化和Fisher Vectors计算的高效GMM拟合(仅限对角协方差),基于yael包该工具箱可利用BLAS/OpenMP API在多核处理器上实现更快的计算。支持单/双精度的密集输入。
Matlab
0
2024-08-26
gmm_estimate.m:高精度说话人识别Matlab程序
这是一个完整的Matlab程序,利用高斯混合模型(GMM)实现说话人识别功能,识别率高达95%以上。
算法与数据结构
4
2024-05-21
通过EM算法学习GMM的3D可视化
这是期望最大化算法如何学习高斯混合模型的3D可视化。数据被读入或生成在一般协方差高斯簇中。播放一部电影,通过EM算法的迭代显示高斯混合模型的演变。真实模型仅在每次迭代时可用,因此通过在这些锚帧之间插入足够多的“帧”来呈现3D高斯运动的错觉(显示为1个标准差的椭球)。
Matlab
2
2024-07-14
使用深度神经网络的自动说话人识别实验的Matlab代码GMM与ASV_DNN
该存储库包含在TIMIT数据库上使用深度神经网络进行自动说话人识别实验的Matlab代码。其中,我们添加了Microsoft工具箱(MST身份)的基线GMM-UBM实现。对于DNN,我们在Matlab中实现了几种初始化方案,如规范化初始化、随机游走init等,并探索了多种学习速率方法,如sgd-cm、ada-delta和adam。所有代码均基于GPU加速。
Matlab
0
2024-09-27