该算法采用贪心策略结合EM算法,通过优化数据与模型的匹配度,寻找数据对GMM模型的最佳匹配,从而实现基于模型的聚类。
GMM聚类算法的贪心EM学习算法
相关推荐
通过EM算法学习GMM的3D可视化
这是期望最大化算法如何学习高斯混合模型的3D可视化。数据被读入或生成在一般协方差高斯簇中。播放一部电影,通过EM算法的迭代显示高斯混合模型的演变。真实模型仅在每次迭代时可用,因此通过在这些锚帧之间插入足够多的“帧”来呈现3D高斯运动的错觉(显示为1个标准差的椭球)。
Matlab
2
2024-07-14
EM算法在GMM参数估计中的应用
高斯混合模型的参数估计通常使用期望最大化(EM)算法,这在matlab环境下尤为常见。
Matlab
0
2024-09-25
聚类算法对比
该研究深入探讨了数据挖掘中的聚类算法,全面比较了各种算法的优点和局限性。
数据挖掘
4
2024-05-01
选择聚类算法
探索聚类算法以有效提取 Web 数据洞察力。
数据挖掘
3
2024-05-25
K均值聚类算法
这份文档包含了用于图像分割的K均值聚类算法的Matlab程序代码。
算法与数据结构
2
2024-07-17
数据聚类算法概述
数据挖掘是从海量数据中提取有价值信息的过程,而聚类算法是其核心方法之一。聚类通过将数据对象根据相似性分组形成不同的簇,使得同一簇内的对象相似度高,而不同簇的对象相异度大。深入探讨了四种常见的聚类算法:K-means、自组织映射(SOM)、主成分分析(PCA)和层次聚类(HC)。K-means通过迭代寻找数据点的中心来实现聚类;SOM通过竞争学习形成有序的二维“地图”;PCA通过线性变换降低数据维度;HC通过构建树形结构表示数据点间的相似性。每种算法都有其独特的适用场景和局限性。
数据挖掘
2
2024-07-18
探索WEKA中的聚类算法
WEKA中的聚类算法
WEKA是一款强大的数据挖掘工具,提供了丰富的聚类算法,用于在数据集中发现隐藏的模式和结构。
常用聚类算法
k-Means: 将数据划分为k个簇,每个簇由其中心点表示。
层次聚类:构建一个树状结构,表示数据点之间的层次关系。
EM算法:基于概率模型,用于发现数据中的潜在类别。
DBSCAN:基于密度的算法,用于识别具有不同密度和形状的簇。
聚类分析应用
客户细分: 将客户群体划分为不同的类别,以便进行 targeted marketing.
异常检测: 识别数据集中与整体模式不符的异常点。
图像分割: 将图像划分为不同的区域,以便进行图像分析和理解。
WEKA的优势
用户友好界面: WEKA 提供了图形化界面,方便用户进行聚类分析。
算法多样性: WEKA 支持多种聚类算法,用户可以根据数据特点选择合适的算法。
开源免费: WEKA 是开源软件,用户可以免费使用和修改。
数据挖掘
3
2024-05-15
优化后的BIRCH聚类算法
BIRCH算法是一种适用于大规模数据集的聚类算法,它通过构建具有统一阈值的聚类特征树(CF树)来实现。改进后的算法不仅能处理数值型数据,还能有效应对混合型属性数据集。我们通过启发式方法选择初始阈值,并提出了阈值在不同阶段的提升策略。此外,对算法参数进行了优化探讨,指出在特定条件下参数的选择对性能影响显著。实验证明,优化后的BIRCH算法在聚类效果上表现出色。
数据挖掘
2
2024-07-16
基于划分的聚类算法-K-prototypes算法
K-prototypes算法是结合了K-Means与K-modes算法,专门用于处理混合属性数据。它解决了数值属性和分类属性同时存在的情况。具体而言,数值属性通过K-means方法得到聚类中心P1,而分类属性则通过K-modes方法得到聚类中心P2。然后,通过加权组合这两个中心来计算距离度量D,权重a决定了分类属性在计算中的重要性。更新簇中心的方法结合了K-Means与K-modes的更新策略。
算法与数据结构
2
2024-07-13