EM算法,即期望最大化算法,是一种迭代算法,用于统计学中寻找依赖于隐性变量的概率模型参数的最大似然估计。
PLSA与EM算法探析
相关推荐
EM算法详解
通过明确的实例展示EM算法的工作原理
深入分析EM算法的机制,揭示其运作方式
算法与数据结构
6
2024-05-15
数据挖掘技术算法与应用探析
数据挖掘技术算法与应用探析
数据挖掘作为一种强大的决策支持手段,在众多领域展现出巨大的应用价值。本报告聚焦于关联规则挖掘技术,沿着数据挖掘的流程展开论述。
首先,报告阐述了数据仓库的构建及其在数据挖掘中的重要作用。接着,深入探讨了关联规则挖掘的核心概念、原理以及常用方法,并对最新研究成果进行分析和展望。最后,报告还关注了数据挖掘结果的可视化呈现,以提升结果的可解释性和实用性。
目录
第一章 数据仓库
1.1 概论1.2 数据仓库体系结构1.3 数据仓库规划、设计与开发1.3.1 确定范围1.3.2 环境评估1.3.3 分析1.3.4 设计1.3.5 开发1.3.5 测试1.3.6 运行1.4 小结
...
数据挖掘
2
2024-05-25
数据挖掘:概念、模型、方法与算法探析
这本教科书全面阐述了数据挖掘的核心理论和实践方法,涵盖概念、模型、方法和算法等方面。全书共分为 13 章和 2 个附录,系统地讲解了数据挖掘的基础知识、完整流程、常用工具及其典型应用场景。本书内容严谨权威、结构合理、逻辑清晰、语言流畅,是高等院校数据挖掘课程的理想教材,同时也是数据挖掘研究人员不可或缺的参考书籍。
数据挖掘
2
2024-05-23
GMM聚类算法的贪心EM学习算法
该算法采用贪心策略结合EM算法,通过优化数据与模型的匹配度,寻找数据对GMM模型的最佳匹配,从而实现基于模型的聚类。
数据挖掘
5
2024-05-01
数据挖掘经典算法之EM详解
《数据挖掘中的十大算法》第四章深入探讨了EM算法,不同于简单的网络资料,内容详实,涵盖七个小节,共计32页。
数据挖掘
3
2024-07-16
使用Matlab实现EM算法的方法
利用Matlab编写EM算法可以用于模式识别中的参数估计。
Matlab
0
2024-09-28
数据挖掘中的EM算法详解
EM算法,全称期望最大化算法,是一种在统计学中广泛应用的优化算法,特别适用于处理含有隐藏变量的概率模型中的参数估计问题。在数据挖掘和机器学习领域,EM算法尤为重要,常用于数据聚类任务。其基本原理包括期望步(E-step)和最大化步(M-step),通过迭代的方式更新参数,直至收敛为止。为了更好地理解EM算法,可以从数学角度分析其期望值和最大似然估计的应用。
数据挖掘
0
2024-10-14
数据挖掘领域经典算法探析
数据挖掘领域中一些最经典的算法,适合初学者深入了解和掌握。
数据挖掘
2
2024-07-17
基于EM算法的图像处理Matlab实现
提供了一个完整的Matlab代码,用于实现基于EM算法的图像处理技术。代码经过精心编写和测试,可以有效处理图像数据。
Matlab
3
2024-06-01