MATLAB论文设计:卡尔曼滤波与最小二乘滤波仿真实验,持续更新,促进学术交流。若不确定版块归属,请等待管理员移动。这些资料来源于学校教师,涵盖简单问题的解决方法。单篇论文和整体压缩包均有提供,以满足不同需求。以下为部分截图,如有需要,请留下邮箱联系。
MATLAB论文设计卡尔曼滤波与最小二乘滤波仿真实验
相关推荐
递归最小二乘滤波器
该项目使用 MATLAB 语言实现了递归最小二乘 (RLS) 滤波器算法,用于信号降噪。
Matlab
8
2024-05-25
使用无迹卡尔曼滤波器进行非线性最小二乘优化matlab开发
卡尔曼滤波器是一种反馈方法,最小化最小均方误差,特别适用于非线性最小二乘优化问题。这个函数提供了使用无迹卡尔曼滤波器解决非线性最小二乘优化问题的方法,涵盖了一般优化问题、神经网络模型中的非线性方程组解决以及神经网络训练问题的示例。你可以从这里下载无迹卡尔曼滤波器函数:链接。
Matlab
9
2024-07-24
对比无迹卡尔曼滤波与扩展卡尔曼纳滤波
比较了无迹卡尔曼滤波和扩展卡尔曼纳滤波在预测性能上的差异,提供一个程序可改的比较框架,方便根据需求自定义函数。
Matlab
5
2024-08-04
卡尔曼滤波理论与应用
概述了卡尔曼滤波的理论和应用,包括卡尔曼滤波简介和相关资料。
Matlab
16
2024-05-15
卡尔曼滤波:原理与实现
卡尔曼滤波:原理与实现
原理:卡尔曼滤波是一种用于估计状态(位置和速度等)的递归算法,该算法考虑了测量不确定性和过程噪声。其核心思想是使用来自过程模型的预测估计和来自测量模型的测量估计,通过加权平均来得到最优估计。
实现:卡尔曼滤波可以使用各种编程语言实现,包括 MATLAB、C 和 C++。实现时需要指定过程模型、测量模型、初始状态估计和协方差矩阵。
应用:卡尔曼滤波广泛应用于各种领域,例如导航、控制和数据处理。它可以有效地处理测量不确定性和过程噪声,并为动态系统提供准确的状态估计。
Matlab
11
2024-05-30
线性最小二乘拟合
线性最小二乘拟合采用多项式拟合,MATLAB 提供 polyfit 函数用于拟合 m 次多项式,返回系数向量 a。拟合后,可以使用 polyval 函数计算指定点的多项式值 y。
算法与数据结构
9
2024-04-29
MATLAB实现最小二乘支持向量机仿真教程
这是一篇讲解MATLAB在最小二乘支持向量机(LS-SVM)上的应用的文章,对于计算机仿真领域非常有帮助!通过,读者可以学习如何在MATLAB环境下实现最小二乘支持向量机模型,并应用于数据分类和回归问题,深入理解其基本原理和实现过程。
Matlab
5
2024-11-06
卡尔曼滤波的MATLAB实现
卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。介绍了卡尔曼滤波的MATLAB实现方法,详细讨论了其在实际应用中的效果和优势。
Matlab
9
2024-07-13
MATLAB应用卡尔曼滤波技术
MATLAB应用卡尔曼滤波技术是一种高效的算法,用于估计动态系统的状态,特别是在存在噪声和不确定性的情况下。该方法通过结合系统的物理状态和观测数据,以最优方式预测系统状态。卡尔曼滤波是一种递归算法,利用前一步的估计和当前的测量来计算当前步的估计。其主要步骤包括预测、更新和纠正。虽然卡尔曼滤波在导航、控制系统、计算机视觉和经济预测等领域有广泛应用,但它要求系统是线性的且噪声服从高斯分布。对于非线性或非高斯系统,可能需要扩展卡尔曼滤波或其他方法。总体而言,卡尔曼滤波是一种强大的工具,可有效应对系统状态估计中的挑战。
Matlab
7
2024-08-26