掌握Flink和Doris构建实时数仓的核心技术,通过实战项目,提升实时数据处理和分析能力。
Flink+Doris实时数仓实战课程分享
相关推荐
Flink+Doris实时数仓实战
课程内容包含视频、源码、文档和虚拟机。
flink
4
2024-05-12
实战Flink+Doris实时数据仓库
一、Doris是一种MPP的OLAP系统,集成了Google Mesa的数据模型、Apache Impala的MPP查询引擎以及Apache ORCFile的存储技术。二、Doris的功能包括数据分析、统计、报表和多维分析。它是百度自主研发并贡献给Apache开源社区的ROLAP数据库。Doris在数据查询延迟方面表现突出,聚合模型用于数据汇总分析,而明细模型则用于详细数据查询。与Kylin相比,Doris支持更广泛的数据场景。
flink
0
2024-08-14
Flink+Doris赋能电商实时数据分析平台:多终端数据洞察
本课程将深入探讨如何利用 Apache Flink 和 Apache Doris 构建一个高效、稳定的实时数据分析平台,以支持 PC、移动端和小程序等多终端电商业务。
我们将涵盖以下核心内容:
电商场景下的数据分析需求
Flink 的实时数据处理能力
Doris 的高性能数据存储和查询
Flink 和 Doris 的集成与应用
多终端数据采集和处理
实时数据可视化和报表
通过本课程,您将学习到如何构建一个端到端的实时数据分析平台,为电商业务提供及时、准确的数据洞察。
flink
4
2024-05-12
企业级实时数仓代码参考
提供企业级实时数仓项目代码,供技术人员参考和学习。
flink
4
2024-05-12
基于Apache Flink和Doris构建电商实时数据分析平台(PC、移动、小程序)
构建电商实时数据分析平台时,需处理大量并发用户行为数据,以快速响应业务需求并提供决策支持。本课程重点介绍如何利用Apache Flink和Doris实现全端(PC、移动、小程序)的实时数据处理与分析。Apache Flink是一款开源流处理框架,具备低延迟、高吞吐量和状态管理能力,适合捕获用户点击、浏览、购买等行为数据,支持事件时间窗口和Session Window功能进行有效分析。Doris是阿里巴巴开源的MPP分布式数据仓库,提供快速查询和高并发读取,用于数据存储、聚合和业务报表查询。综合以上技术,电商实时数据分析平台能实现AB版本分析、用户流失分析和营销活动效果评估。
spark
1
2024-07-24
Flink与Iceberg全场景实时数据仓库的建设经验分享
随着数据处理技术的进步,Flink和Iceberg作为关键技术组件,正在被广泛应用于实时数据仓库的建设中。分享了它们在全场景实时数据处理中的实际应用和优势。
算法与数据结构
2
2024-07-17
Apache Flink实时数据处理框架详解
Apache Flink作为一款强大的实时大数据计算框架,以其批流一体、高容错性、高吞吐低延迟、多平台部署等特性,成为了流处理领域的首选。深入解析了Flink的核心特点、容错机制、高吞吐低延迟的实现、大规模复杂计算以及基本架构。
flink
0
2024-08-19
Flink-一线公司实时计算实战经验分享
Apache Flink 是一款高度活跃的开源大数据计算引擎,专长于实时计算和流式处理。过去几年,尤其是2019年,Flink 的发展速度显著,GitHub Star 数量翻倍,Contributor 数量持续增长,表明越来越多的开发者和企业正在采用 Flink 并积极参与到其发展中。在中国,Flink 已经被广泛应用于多个一线公司,例如 阿里巴巴、快手、bili、美团点评、小米、OPPO 和 菜鸟网络 等。这些公司利用 Flink 构建了实时计算平台,用于处理大规模的准实时数据分析、实时数仓建设和实时风控等任务。Flink 的高效性能和灵活性使它成为实时数据处理领域的首选工具。
Flink 的核心特性包括其流水线运行系统,能够同时处理批处理和流处理任务,提供了低延迟、高吞吐量的数据处理能力。此外,Flink 的状态管理和事件驱动功能使其在实时数据分析和在线函数计算中表现出色。在未来的演进方向上,Flink 社区的目标是将其发展成为一个统一的数据引擎。这意味着 Flink 将进一步整合批处理和流处理,实现批流一体,提供统一的数据处理和分析解决方案。
在 Flink 1.9版本之前,批处理(DataSet API)和流处理(DataStream API)是分开的,但在1.9及后续版本中,社区致力于整合这两部分,使它们在运行时环境和API层面更加融合。同时,Flink 社区也在积极探索在线数据分析处理的潜力,利用 Event-Driven Function 的能力和内置的状态管理特性,推动 Flink 在函数计算领域的应用。随着人工智能的快速发展,Flink 有望更好地支持 AI 场景,可能通过与 TensorFlow、PyTorch 等深度学习框架的集成,提供大数据+AI的全链路解决方案。
Apache Flink 在实时计算领域的地位日益巩固,其技术成熟度和社区活跃度都在不断提升。无论是国内还是国际的一线公司,都在积极利用 Flink 来解决大规模数据处理的挑战,并推动着 Flink 的技术创新和应用边界扩展。随着 Flink 批流一体架构的不断优化,我们可以期待它在未来成为更加全面、强大的数据处理平台。
flink
0
2024-11-06
利用Flink和Iceberg构建企业级实时数据湖
利用Flink和Iceberg技术,可以构建一个高效的企业级实时数据湖。这种架构不仅能够处理大规模数据流,还能确保数据的实时性和准确性。Flink提供了强大的流处理能力,而Iceberg则提供了可靠的数据湖管理和查询功能,使得企业能够更有效地管理和分析数据。
数据挖掘
3
2024-07-16