利用Flink和Iceberg技术,可以构建一个高效的企业级实时数据湖。这种架构不仅能够处理大规模数据流,还能确保数据的实时性和准确性。Flink提供了强大的流处理能力,而Iceberg则提供了可靠的数据湖管理和查询功能,使得企业能够更有效地管理和分析数据。
利用Flink和Iceberg构建企业级实时数据湖
相关推荐
企业级实时数仓代码参考
提供企业级实时数仓项目代码,供技术人员参考和学习。
flink
4
2024-05-12
利用Flink与ClickHouse实现企业级实时大数据开发
最新升级版19章课程中,增加了Flink CDC的内容,覆盖Flink 1.12与ClickHouse 21.4.5.46的最新版本。Flink作为高薪大数据工程师必备技能,正迅速成为企业级大数据实时分析的首选工具。本课程从原理出发,通过案例驱动方式,系统讲解Flink开发的各个方面,同时引入ClickHouse作为热门OLAP引擎,帮助学习者构建完整的大数据实时分析应用。学习者将通过六大核心模块深入理解Flink,从而快速掌握并应用于实际项目中。
flink
2
2024-07-28
基于Flink、Iceberg和对象存储的数据湖构建方案
阿里分享了一种利用 Flink、Iceberg 和对象存储构建数据湖的方案。
Flink 作为高吞吐、低延迟的流式处理框架,负责实时数据的摄取和处理。Iceberg 则作为数据湖的表格式引擎,提供 ACID 事务、高效的查询和数据演进能力。对象存储作为底层存储,提供高可扩展性和低成本的优势。
这种方案结合了三者的优势,可以高效地构建和管理数据湖,满足不同场景的数据分析需求。
flink
3
2024-05-12
基于Flink+Hudi构建企业万亿级云上实时数据湖视频教程(2021新课)
本课程帮助学员掌握在云环境中搭建和管理大规模数据湖系统的技能。通过学习,学员将深入了解大数据生态系统中的关键组件,如Flink、Spark、Hadoop等,并能够应用这些技术处理实际业务场景中的数据需求。课程涵盖Flink的API编写、窗口设置、状态管理,确保数据的准确性和一致性。Hudi作为数据湖存储层,支持实时查询和更新,学员将学习如何使用Hudi维护数据一致性,提升查询性能。课程还包括Spark在批处理和交互式查询中的应用,以及与Flink协同工作,实现混合处理模式。此外,学员将了解数据湖的分层架构、数据生命周期管理、数据安全和隐私保护,以及在AWS、Azure上的部署方法。
flink
3
2024-07-12
Flink与Iceberg全场景实时数据仓库的建设经验分享
随着数据处理技术的进步,Flink和Iceberg作为关键技术组件,正在被广泛应用于实时数据仓库的建设中。分享了它们在全场景实时数据处理中的实际应用和优势。
算法与数据结构
2
2024-07-17
构建企业级大数据平台:架构与实战
构建企业级大数据平台:架构与实战
本资源提供企业级大数据平台构建的完整指南,涵盖从基础架构设计到实用开发代码的全面内容。
核心内容:
大数据平台架构设计原则与最佳实践
主流大数据组件选型与集成策略(Hadoop、Spark、Kafka等)
数据采集、存储、处理、分析流程构建
平台安全、监控、运维体系建设
实用开发代码示例,加速项目落地
适用对象:
大数据架构师
大数据开发工程师
数据科学家
对大数据技术感兴趣的技术爱好者
Hadoop
2
2024-05-23
Flink与Iceberg优化数据入湖策略的完美组合
数据入湖是大数据处理中的重要步骤,涉及如何有效存储各种数据源的数据,并确保数据完整性和一致性。Apache Flink和Apache Iceberg是解决这些挑战的关键工具。深入探讨了它们如何应对数据传输中断、数据变更管理、近实时报表性能下降和实时CDC数据分析等核心挑战。Apache Iceberg通过ACID事务、动态Schema管理和优化的元数据管理提供了强大支持,而Flink则通过状态管理与容错和统一API支持实现了流和批处理的高效整合。
flink
0
2024-10-13
Flink+Doris实时数仓实战
课程内容包含视频、源码、文档和虚拟机。
flink
4
2024-05-12
利用Flink和Alink构建高效实时用户画像系统全程视频教程
分享一套全新课程,教你如何利用Flink和Alink构建高效实时用户画像系统。本课程采用最新的大数据技术栈,让你深入理解技术进步带来的变革,节省学习成本,提升企业开发效率。
flink
0
2024-08-08