这是一个MATLAB时间序列代码的简介,介绍了如何使用Estimate_AR.m来估计AR(p)模型。AR(p)模型可以表示为$$ y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + ... + \phi_p y_{t-p} + \epsilon_t $$ Estimate_AR.m 函数的输入包括:muexist(布尔值,TRUE表示y的期望不为零),p(AR模型的参数),以及按时间排序的数据列向量y。输出为参数估计 phihat 和误差方差估计 sigma2hat。该函数使用OLS方法进行参数估计。
统计代码下载MATLAB ARMA模型的实现
相关推荐
时间序列分析2020年统计课程的ARMA模型Matlab代码及软件包
我在2020年S1和S2教授的统计课程中,涵盖了时间序列分析的所有ARMA模型的Matlab代码和软件包。我使用Python、R、Matlab/Octave、Julia和Stata等多种语言,为学生提供了全面的教学内容。在Python中,由于缺少HEGY测试,我开发了自己的解决方案。课程涵盖了OLS基本操作(估计、预测、测试)、AR、MA、ARMA、ARIMA、趋势分解、SARIMA和不同的平滑技术(指数平滑、Holt-Winters等)、VAR、ECM等各种时间序列分析方法。此外,还介绍了贝叶斯净模型(如隐马尔可夫模型)、递归神经网络和信号处理技术(如傅立叶变换和拉普拉斯变换),以及基本的过滤方法如卡尔曼滤波器。
Matlab
0
2024-09-28
ARMA模型时间序列分析Python代码
使用Python代码对时间序列数据进行ARMA模型分析。
统计分析
6
2024-04-29
ARMA模型及其应用
ARMA模型是一种用于时间序列分析的统计模型,结合了自回归模型(AR)和移动平均模型(MA)。在数据分析中,ARMA模型广泛应用于经济、金融等领域,帮助分析和预测时间序列数据的趋势和波动。ARMA模型的参数选择和模型评估是关键步骤,通过正确的模型构建,可以更准确地理解数据背后的规律。
Access
2
2024-07-12
基于ARMA模型的时间序列分析
使用ARMA模型对海浪高度数据进行时间序列分析及预测拟合,代码中有详细注释,便于学习理解。
算法与数据结构
2
2024-07-13
MATLAB实现TVP-VAR模型的代码
这是一个MATLAB实现的TVP-VAR模型代码,用户可以根据需要修改变量和数据,以便直接运行。
算法与数据结构
2
2024-07-16
使用Matlab实现HMM模型的代码示例
在这个示例中,我们展示了如何使用Matlab编写和运行HMM模型的代码。示例数据文件包括1.dat和2.dat,这些文件包含了排放量和状态的数据。我们在train.m中提供了代码,用于加载和处理这些数据,并用最大似然估计初始化模型。通过调整初始状态分布,我们确保模型的准确性。此外,我们还展示了如何通过javac和java调用Matlab控制包matlabcontrol-4.1.0.jar来运行Hmm.java文件。
Matlab
0
2024-09-27
MATLAB实现的vi-HMM模型代码概述
我们的方法采用MATLAB编写,介绍了一种通过隐马尔可夫模型(HMM)识别SNP和Indel的新方法。该模型通过读取带有Phred + 33编码质量得分的SAM文件和参考基因组(FASTA文件)来确定每个位置最可能的突变状态。它生成TXT格式的状态信息报告变体,并提供了将TXT格式转换为变体调用文件(VCF)格式的代码。用户可以从解压缩包中获取并使用该程序。在MATLAB中,将当前工作目录更改为“ vi-HMM”文件夹,其中包含按组织存储的子文件夹和代码。要运行程序,请将“ vi-HMM”及其子目录添加到MATLAB路径中(使用命令>> addpath(genpath(pwd)))。分析所需的数据必须放置在名为“数据”的文件夹中,该程序提供了随附的示例数据(ref.fa,example.sam和truevar.txt),这些数据基于一个包含四个隐藏状态的HMM模型:“匹配”,“SNP”,“删除”和“插入”,具有过渡概率矩阵T和发射概率矩阵E。详细的数据模拟信息可供参考。
Matlab
0
2024-09-26
MATLAB 中的 ARMA 建模和预测
本代码可用于轻松地实现自回归移动平均 (ARMA) 建模和预测,超越了 MATLAB 自身文档中提供的功能。
Matlab
2
2024-06-01
Implementing ARMA Modeling and Forecasting in MATLAB
此代码可以直接实现ARMA建模和预测。请注意,MATLAB自身说明文档无法实现预测功能。
Matlab
0
2024-11-04