本代码可用于轻松地实现自回归移动平均 (ARMA) 建模和预测,超越了 MATLAB 自身文档中提供的功能。
MATLAB 中的 ARMA 建模和预测
相关推荐
利用误差平方和方法在数学建模中的预测应用
误差平方和方法通过极小化条件,利用对称系数矩阵,提供了计算机实现最小二乘法估计的无偏方法。在数学建模中,它被广泛应用于多元线性回归分析预测法。
算法与数据结构
2
2024-07-16
MATLAB在时间序列建模预测中的应用及程序示例
时间序列是按时间顺序排列、随时间变化且相互关联的数据序列。时间序列分析是数据分析中一个重要的领域。以下是MATLAB在时间序列建模预测中的具体应用示例。
Matlab
2
2024-07-30
基于MATLAB的灰色预测建模与应用
灰色预测,基于灰色系统理论,适用于数据量少、难以构建精确模型的场景。其核心是将数据进行灰色处理,区分已知和未知信息,并利用已知信息进行预测。
主要步骤:
灰色模型的选择:根据实际问题选择合适的模型,如GM(1,1)、GM(2,1)等。
原始数据序列的构建: 将原始数据构建为矩阵形式,并进行预处理。
GM(1,1)模型构建: 假设原始数据序列可通过一次累加得到发展规律,并进行模拟。
灰色模型参数求解: 利用已有数据,通过数学方法求解灰色模型参数。
模型检验: 检验模型的拟合效果。
模型预测: 使用建立的模型进行未来数据预测。
结果评估: 对预测结果进行评估,检验预测精度。
通过MATLAB,可以方便地实现灰色预测模型的构建、求解、检验和预测,为实际问题提供有效的解决方案。
数据挖掘
6
2024-05-25
应用时间序列分析:建模和预测的实践指南
特伦斯·C·米尔斯撰写的《应用时间序列分析:建模和预测的实践指南》已提供高清原版PDF,便于阅读。
算法与数据结构
5
2024-04-30
数学建模预测方法
数学建模中应用的预测方法提供了对未来事件或趋势的定量估计。这些方法包括回归分析、时间序列分析和神经网络,它们利用历史数据来创建模型,并根据该模型对未来做出预测。预测方法在各种建模应用中至关重要,包括需求预测、风险分析和决策支持。
算法与数据结构
3
2024-05-13
灰色系统预测模型在数学建模中的应用
原理:
建模原理:将观测数据列进行一次累加,得满足一阶常微分方程(7.1)
模型:
灰色理论预测模型:灰色系统模型
算法与数据结构
5
2024-04-30
数学建模中预测方法的基本概念及应用
在社会经济中,影响事物发展的因素复杂多样,单一的一元回归模型往往难以全面反映实质。通过多元回归分析,如城市公共交通营运总额y与人口总数x1、国民生产总值x2、商品流通量及人口流动数x3等多个因素的关系,可以更准确地把握事物的本质。进一步,可建立如粮食总产量y与播种面积x1、化肥施用量x2、有效灌溉面积x3等8个因素的多元线性回归预测模型。
算法与数据结构
2
2024-07-18
Implementing ARMA Modeling and Forecasting in MATLAB
此代码可以直接实现ARMA建模和预测。请注意,MATLAB自身说明文档无法实现预测功能。
Matlab
0
2024-11-04
预测负载MATLAB代码数据驾驶底特律——论文代码“用数据驱动底特律车队维护的建模和预测”
预测负载数学代码数据驾驶:底特律车队维护建模和预测。注意:本分析使用的数据不公开,并受底特律市运营和基础设施集团的数据保密协议约束。本存储库包含用于的所有源文件:《用数据驱动:底特律车队维护建模和预测》J. Gardner, D. Koutra, J. Mroueh, V. Pang, A. Farahi, S. Krassenstein, 和 J. Webb。详细介绍了PARAFAC / PRISM分析和LSTM维护预测模型的复制方法。ARIMA模型目前在单独的存储库中提供。有关底特律车辆维修数据集上PARAFAC分析的完整结果,请参阅结果页面。要复制“使用底特律数据驱动”(DDD)分析,请先安装ddd模块。最简单的方法是克隆存储库,创建虚拟环境,然后运行$ pip3 install -e . PARAFAC / PR。
Matlab
1
2024-07-27